
GoDiagram Win for .NET 

& .NET Core 

Interactive Diagram Classes  

User Guide 
 

 

This guide provides information on using: 

GoDiagramTM for Microsoft® .NET Windows Forms (GoDiagram Win) 

Controls and classes for building interactive graphical diagrams 

for Windows Forms. 

 

October 2019 

 

Northwoods Software Corporation 

142 Main St. 

Nashua, NH 03060 USA 

http://www.nwoods.com/ 

 

http://www.nwoods.com/


 

Copyright © 1999-2018 Northwoods Software Corporation 

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 

system, or transmitted in any form or by any means, electronic, mechanical, 

photocopying, recording, or otherwise without the prior written permission of the 

publisher. 

Northwoods Software Corporation makes no representations that the use of its 

products in the manner described in this publication will not infringe on existing or 

future patent rights, nor do the descriptions contained in this publication imply the 

granting of licenses to make, use, or sell equipment or software in accordance with the 

description. 

Possession, use, or copying of the software described in this publication is authorized 

only pursuant to a valid written license from Northwoods or an authorized sublicensor. 

Neither Northwoods Software Corporation nor its employees are responsible for any 

errors that may appear in this publication. The information in this publication is subject 

to change without notice. 

The following are trademarks of Northwoods Software Corporation: Northwoods 

Software, GoDiagram, GoLayout, GoInstruments, JGo, GO++, Sanscript, Flowgram, the 

Northwoods logo, and Fully Visual Programming. 

All other trademarks and servicemarks are property of their respective holders. 



GoDiagram 3 Copyright © Northwoods Software 

CONTENTS 

1. Introduction ................................................................................................................. 7 

2. Go Concepts ................................................................................................................ 8 

Design Philosophy ........................................................................................................ 8 
Documents .................................................................................................................... 9 
Views ............................................................................................................................. 9 
Tools ............................................................................................................................ 11 
Events ......................................................................................................................... 12 
Graphical Objects ........................................................................................................ 12 
Selection...................................................................................................................... 13 
Collections ................................................................................................................... 14 
Diagrams ..................................................................................................................... 15 
A Minimal Application .................................................................................................. 16 

3. Building Applications ............................................................................................... 20 

Choosing a Model ....................................................................................................... 20 
Programmatically Creating a Diagram with Nodes and Links ..................................... 21 
Handling Events .......................................................................................................... 23 
Traversing a Diagram .................................................................................................. 27 
Supporting Save and Load.......................................................................................... 32 

4. Documents and GoObjects ...................................................................................... 34 

GoDocument ............................................................................................................... 34 
GoObject ..................................................................................................................... 43 
GoShape ..................................................................................................................... 50 
GoText ......................................................................................................................... 60 
GoImage...................................................................................................................... 62 
GoGroup...................................................................................................................... 64 
GoPort ......................................................................................................................... 67 
GoLink ......................................................................................................................... 71 

5. Views and Tools ........................................................................................................ 80 

Display ......................................................................................................................... 82 
Events ......................................................................................................................... 90 

6. Nodes ....................................................................................................................... 109 

GoBasicNode ............................................................................................................ 110 
GoIconicNode ........................................................................................................... 113 
GoTextNode .............................................................................................................. 114 
GoMultiTextNode ...................................................................................................... 116 
GoBoxNode ............................................................................................................... 117 
GoSimpleNode .......................................................................................................... 118 
GoGeneralNode ........................................................................................................ 121 
GoSubGraph ............................................................................................................. 123 
GoComment .............................................................................................................. 128 
GoBalloon.................................................................................................................. 128 
GoButton ................................................................................................................... 129 



Example Nodes ......................................................................................................... 130 
Example SubGraph Classes ..................................................................................... 140 

7. Undo and Redo ....................................................................................................... 144 

IGoUndoableEdit and GoChangedEventArgs........................................................... 145 
GoUndoManager, CompoundEdits and Transactions .............................................. 152 
Defining Menu Commands........................................................................................ 154 

8. XML, SVG and PDF ................................................................................................. 156 

Writing and Reading XML ......................................................................................... 157 
Writing SVG............................................................................................................... 174 
Writing PDF ............................................................................................................... 178 

9. Performance Hints .................................................................................................. 180 

10. Deployment and Licensing ....................................................................... 182 

 



GoDiagram 5 Copyright © Northwoods Software 

Preface 

Purpose of this guide 

This guide provides an overview of GoDiagram for .NET, .NET class libraries containing sets of 

controls for easily building interactive diagrams.  GoDiagram for .NET Windows Forms is for 

stand-alone Windows Forms applications. 

There used to be a version for ASP.NET, called GoDiagram for ASP.NET Web Forms is 

“GoDiagram Web”.  That version is no longer supported.  Use our GoJS product for web apps. 

Understanding this guide requires familiarity with the .NET platform and with Windows Forms. 

For more detailed information about the types, classes and interfaces in GoDiagram for .NET 

Windows Forms (the Northwoods.Go library in the Northwoods.Go.dll assembly), see the 

GoDiagram Win Reference Manual, GoWin.chm, a compiled HTML archive. 

The Frequently Asked Questions list has been moved into a separate document, 

GoDiagramFAQ.htm. 

Northwoods Software also maintains a forum on its website: http://forum.nwoods.com/. 



Terminology 

We will often use “GoDiagram” or “Go” to refer to GoDiagram for .NET. 

The short name for GoDiagram for .NET Windows Forms is “GoDiagram Win”, or sometimes 

“GoWin”.  

A “user” is the person who sees the Go controls and displayed objects and who uses the mouse 

and keyboard to manipulate them. 

“You” refers to the programmer who is developing an application using the Go controls.  Of 

course every developer is also a “user”, when debugging and testing an application. 



GoDiagram 7 Copyright © Northwoods Software 

1. INTRODUCTION 

The Go libraries are sets of controls and classes built on the .NET platform.  Go makes it easy to 

deliver user interfaces that allow users to see and manipulate diagrams of two-dimensional 

graphical objects arranged in a scrollable window. 

Go provides a variety of basic graphical objects such as rectangles, ellipses, polygons, text, 

images, and lines.  You can group objects together to form more complex objects.  You can 

customize their appearances and behaviors by setting properties and overriding methods. 

A Go view is a control that displays a Go document.  It supports mouse-based object 

manipulation, including selecting, resizing, moving and copying using drag-and-drop.  Go 

organizes input behaviors into tools that you can modify, override, or add or remove from a 

view.  The view also supports in-place editing, printing, and grids. 

A Go document implements a model that supports manipulation of objects.  Adding an object to 

the document makes it visible in the document’s views.  You can organize objects in layers.  Go 

provides support for composing and manipulating graphs (node & arc diagrams), where nodes 

have ports that are connected by links. 

The Go library is flexible and extensible. Many predefined node classes make it easy to build 

many kinds of diagrams.  You can easily customize most objects for application-specific purposes 

by setting properties or by subclassing.  You can add completely new graphical objects to the 

existing framework.  

Other libraries, named Northwoods.Go.*, extend Go by providing automatic layout algorithms, 

meters/dials/gauges, and support for reading/writing XML.  These are documented either in 

separate manuals or later in this one. 

 

If you are using GoDiagram Win, you should read GoWinIntro.doc first. 

 



2. GO CONCEPTS 

This guide assumes you are already familiar with Windows, the .NET Common Language 

Runtime and .NET Framework classes, and System.Windows.Forms and System.Drawing in 

particular.  Go builds directly on this framework, so understanding them is a prerequisite for 

understanding Go. 

All Go classes follow the convention of using "Go" in their name (e.g., GoView) to avoid name 

conflicts when using the Northwoods.Go namespace; any other class names in this document 

are .NET Framework classes (e.g., System.Drawing.Graphics) or in the sample source code. 

Design Philosophy 

Go has been designed for high performance, ease of use and flexibility to meet a wide variety of 

requirements.  You can easily customize Go just by setting properties on views, documents, and 

objects, or by providing event handlers for the view or documents. 

While Go may not provide every last feature you may need, Go does provide many methods 

that you can call or override to get exactly the behavior you want. 

Go is designed to allow you to organize your application in ways that scale up as well as in ways 

that are expedient.  For many actions and events, there are several steps performed by several 

different classes.  Each step can be customized or overridden. 

Although you may find that there appear to be multiple ways of doing something, one of those 

ways is likely to be better than the others for your application.  The benefit is that it is easier to 

put your code where it belongs once you understand how you are likely to need to maintain and 

extend it in the future. 

A common situation is that you might add a particular event handler in your initial 

implementation in order to achieve certain functionality.  Later you realize the code doesn’t 

belong with the form, but with the view, with the document or with the individual object class.  

We have designed Go to make different application architectures easier to implement. 

One way to discriminate between different implementation strategies is to decide if the actions 

are just associated with the user’s interactive direct-manipulation of an object or if the actions 

should occur programmatically, no matter the reason nor what code is executing.  For example, 

disallowing the user from using the mouse interactively to move an object in a diagram does not 

prevent some code from changing its position by assigning its position programmatically.  



GoDiagram 9 Copyright © Northwoods Software 

However it is also possible to implement objects whose position cannot be changed by any 

means whatsoever. 

If you want to see what the class hierarchy is for Go, you won’t find that here.  Instead you will 

find a much more informative and interactive way to see a class hierarchy by running the 

Classier sample application. 

Documents 

Go uses a model-view-controller architecture.  GoDocument serves as the model, i.e. a 

container providing the abstract representation of the things the user may see in a view. 

Documents provide runtime storage for displayable objects.  A document is the object that 

contains the list of layers of graphical objects to be displayed in one or more views.  When you 

want to have a graphical object appear to the user, you create it, make sure it has a reasonable 

size and position and any other properties you care about, and then add it to a document’s 

layer. 

Class GoDocument inherits from System.Object; i.e., a document and its objects do not depend 

on the existence of a window.  A document has an instance of GoLayerCollection, which is a 

collection of GoLayer instances.  Each GoLayer is a collection of GoObjects, which are the things 

users can see and manipulate in a view. 

Each document has a number of properties that affect its appearance and behavior.  These 

include properties such as paper color and whether the user can delete or insert or move or 

copy objects. 

GoDocument supports one event, Changed, so that interested observers can be notified of 

changes to the document or to any of its objects. 

Views 

GoView serves as the view in the model-view-controller architecture.  Views provide a window 

on the graphical objects stored in a document. A view defines how the user sees the objects and 

interacts with them.  Each view handles its document’s Changed event so that it can keep its 

window up-to-date with all of the objects in the document. 

Class GoView inherits from System.Windows.Forms.Control.  It has many properties for 

controlling its appearance and behavior.  As a regular control, GoView can be placed in a form 

designer’s toolbox and drag-and-dropped onto a form to be instantiated.  It raises many kinds of 

events involving clicking, selecting, moving, or deleting objects or clicking in the background. 



GoView provides end-user editor support for selection, within-the-view drag-and-drop, copy-

and-paste, and grid display.  GoDiagram Win also provides support for hovering, cross-window 

drag-and-drop, in-place text editing, and printing. 

There are two subclasses of GoView that provide more specialized behavior.  Here is a class 

hierarchy diagram of the GoView classes: 

 

• GoOverview presents a reduced-scale view of a different view, along 

with the ability for the user to pan and zoom that other view by 

dragging around a rectangle within the overview, and by dragging in the 

background to specify a new position and scale for that other view. 

  

• GoPalette holds a read-only collection of objects, laid out in a grid, for 

the user to select and drag into a GoView. 



GoDiagram 11 Copyright © Northwoods Software 

  

Tools  

As a regular control, GoView is responsible for handling all input events.  However, to make 

input handling more flexible and better organized, GoView just passes on all regular mouse and 

keyboard input to one of the objects implementing IGoTool that each view maintains.  Thus 

both GoView and GoTool serve as the controller part of the model-view-controller architecture. 

Class GoTool is the standard implementation of IGoTool, deriving from System.Object.  It has 

methods for handling mouse down/move/up and keyboard input.  It also has methods that the 

view can call to control its tools: to determine if that tool instance is applicable and to start and 

stop it. There are subclasses of GoTool for each of the kinds of predefined user interaction, such 

as GoToolSelecting, GoToolDragging, GoToolLinking, GoToolResizing, GoToolRubberBanding, 

GoToolZooming, and GoToolPanning. 

The GoToolManager tool is normally the view’s default tool; it is responsible for invoking the 

appropriate specific tool and for handling standard keys such as Escape, PageUp/Down, Delete 

and Ctrl-X/Ctrl-C/Ctrl-V when no other tool is active. 

GoView and the GoTools, in conjunction with the individual graphical objects, provide a default 

user interaction style that is consistent with standard usability guidelines for selecting, moving, 

resizing and other user interactions.  However, user interactions defined by GoView, GoTool, 

GoDocument and GoObjects are highly customizable. Much of this customization is achieved by 

setting properties, such as by setting GoView.AllowDelete to false. Additional customization can 

be accomplished by registering event handlers, such as for GoView.ObjectGotSelection or 

GoView.ObjectSingleClicked.  More powerful customization can be achieved through the 

subclassing of the GoView, GoTool, GoDocument and GoObject classes and overriding their 

methods.  



Events 

Just as there are two kinds of ways to cause changes, interactive and programmatic, there are 

two kinds of events that Go provides, interactive and programmatic. 

Interactive events are caused by a user’s gestures with the mouse or the keyboard.  This causes 

GoView to raise events.  Examples include GoView.ObjectDoubleClicked and 

GoView.SelectionDeleted.  These events are more suited for the purposes of an interactive 

diagram control than the standard Control events such as Control.MouseUp. 

Programmatic events occur whenever any code anywhere causes a change, not necessarily as a 

result of a direct user interaction. 

For changes to a GoDocument, its GoLayers, or its GoObjects, the GoDocument.Changed event 

notifies all event handlers that something has changed, and it provides a description of the 

change in a GoChangedEventArgs object.  As a programming convenience, GoView passes on 

GoDocument.Changed events as its own GoView.DocumentChanged event. 

For changes to a GoView’s properties, the GoView.PropertyChanged event notifies its event 

handlers that a GoView property has changed.  For changes to layers and objects that are part 

of the view (and not of the view’s document), there is no defined event—only the 

GoView.RaiseChanged method is called, because needing to handle such cases is rare. 

Graphical Objects 

All graphical object classes in Go inherit from GoObject, which in turn inherits from 

System.Object.  Here are some samples: 

 

GoObject defines the basics of a graphical object: a bounding rectangle (the Bounds property) 

and some common attribute properties: Visible, Printable, Selectable, Movable, Copyable, 

Resizable, Reshapable, Deletable, Editable, AutoRescales, ResizesRealtime, and Shadowed. 

The simplest way to think about GoObject is that it is a rectangular area that knows how to draw 

itself into a view.  GoObject defines a virtual Paint method that defines the appearance of that 

object.  Thus the full power of the System.Drawing namespace is available for drawing your 



GoDiagram 13 Copyright © Northwoods Software 

custom objects, in those rare cases where the predefined subclasses of GoObject do not meet 

your needs. 

GoObject also handles certain view events and supports change notification and undo/redo.  

GoObject provides numerous methods so that custom derived objects can provide exactly the 

desired look and feel. More information is provided in the following chapters. 

There are three kinds of primitive GoObjects: 

• Shapes, such as rectangles, ellipses, diamonds, and strokes.  Each 

GoShape instance can have a Pen for drawing the outline of the shape 

and a Brush for painting the inside of the shape. 

• Text, in various fonts, sizes and colors.  GoText objects also support 

multiple lines and wrapping.  With Windows Forms, the user can 

perform in-place editing using several kinds of controls. 

• Images, for various kinds of images such as bitmaps, JPEGs and GIFs.  

GoImage objects can get their image information from files, resource 

managers, or image lists. 

Selection 

The GoSelection class is used by a view to maintain a separate list of the objects selected. Each 

view has its own selection. In addition, the selection class notifies objects of gaining and losing 

selection events, and has support (in conjunction with GoObject) for the appearance of a 

selected object. 

 

Objects can define their own selection appearance or use the default provided by the GoObject 

and GoSelection classes. Normally GoSelection uses a class called GoHandle, to make selection 



handles appear on the screen.  However, you can use other objects, if they implement the 

IGoHandle interface. 

GoView has some useful methods for manipulating the selection: adding objects to the selection 

and moving or copying or deleting the selected objects. 

Collections 

Go provides two principal kinds of collections of graphical objects: groups and layers.  Groups 

provide a way of making a single “object” out of other objects.  Layers are a way of viewing 

multiple collections of objects in a document. 

GoGroup inherits from GoObject and implements IGoCollection, a collection of. GoObjects.  

Since GoGroup itself inherits from GoObject, groups can contain other groups, to any depth.  An 

object that does not have a parent group is called a “top-level” object.  The objects in a group 

are often called its children. 

IGoCollection, and thus GoGroup, includes methods or properties such as Add, Remove, 

Contains, Clear, IsEmpty, ArrayCopy, Count, GetEnumerator, and Backwards so that you can 

manipulate the contents of the group.  You can use the foreach construct to perform the 

iteration.  Remember that when you are iterating over the objects in a collection you cannot 

modify the collection.  This is true for all .NET collections. 

GoGroup also provides default implementations of several GoObject methods such as Paint, 

Pick, ComputeBounds, and OnBoundsChanged.  These default implementations typically iterate 

over all of the items in the collection, calling the appropriate methods on each object. 

Since GoGroup is a GoObject, each group has a Bounds property.  The bounds calculated by 

ComputeBounds are just the union of all of the child objects, whose coordinates are 

independent of the group.  Moving a group will normally move all of the children; resizing a 

group will normally resize all of the children proportionately. 

Removing a group from a document effectively causes the group’s children to disappear also. 

GoLayer is a collection of top-level GoObjects held by a GoDocument.  Layers are just a way to 

organize the collection of objects owned by a document.  Each document starts off with one 

layer.  You can add and remove layers from a document.  You can also change the order of the 

layers in a document, thereby making potentially many objects all over the document appear in 

front of or behind other collections of objects.  Furthermore you can affect the visibility of all of 

those objects in a layer all at once.  Unlike GoGroup, GoLayer does not extend GoObject, so one 

cannot have layers within layers.  But GoLayer does implement IGoCollection, so you can use 

those methods and properties for manipulating the collection of objects in a layer. 



GoDiagram 15 Copyright © Northwoods Software 

Layers also support limiting user actions on the objects in the layer.  Such properties include 

AllowSelect, AllowMove, and AllowDelete.  For example, you can organize a document so that 

one layer contains all of the objects that you do not want the user to delete; this layer would 

have its AllowDelete property set to false. 

There is also a standard implementation of the IGoCollection interface: the GoCollection class.  

You may find this useful when you need a collection of GoObjects but don’t want to use 

GoSelection, GoGroup, or GoLayer. 

Diagrams 

One of the principal uses of Go is to make it easy to build applications where users can see and 

manipulate diagrams (a.k.a graphs) of nodes (a.k.a. vertices) connected by links (a.k.a. arcs or 

edges).  Go provides this functionality with the GoNode, GoPort and GoLink classes.  Nodes are 

groups containing one or more ports.  Links are strokes that connect two ports.  Most of the 

predefined classes that you will use to represent your graphs or networks are subclasses of 

these classes. 

The following picture identifies the parts of two nodes connected by a link at two ports. 

 

Although the GoNode, GoPort, and GoLink classes are all subclasses of GoObject, the basic 

aspects of being a node, a port, or a link are actually embodied by the IGoNode, IGoPort, and 

IGoLink interfaces. 

IGoLink provides properties for getting the IGoPorts at either end of the link. 

IGoPort provides access to the IGoLinks that are connected to the port.  The members allow 

access to links (and therefore implicitly to the nodes that contain the ports of those links) that 

are coming into the port or going out of the port, under the assumption that links are 

directional.  Or you can deal with the whole collection of links in either direction at the port.  

IGoPort also provides members for determining if the user can draw a link from one port to 

another port. 



IGoNode provides access to the IGoPorts that the node contains, as well as to the collections of 

links or nodes that those ports are directly connected to. 

All three of these interfaces provide access to the GoObject that represents the abstract node, 

port, or link.  And all three interfaces (and GoDocument too) provide two properties that allow 

you to associate a custom integer value and a custom object with each node, port, or link, 

without having to subclass. 

 

A frequent feature of nodes is that they have a distinguished or primary text label.  The 

IGoLabeledNode interface provides access to both the string value and the GoText label.  

GoNode implements IGoLabeledNode too, so methods such as GoDocument.FindNode can 

search for a node that matches a string. 

The sample classes provide some pre-built implementations of useful nodes, in addition to the 

ones that are included in Go.  You can modify them if you need to customize their appearance 

or behavior. 

The sample apps provide some pre-built implementations of graphical browsers and editors, 

using the views and nodes that Go supplies.  They show you how to create diagrams and how to 

load and store them from files. 

 

A Minimal Application 

A very basic use of Go is provided in the samples directory, MinimalApp. 

This minimal application just puts up two BasicNodes of different colors.  The user can link them 

together, select nodes and/or links, move them around, copy them, or delete them.  Go 



GoDiagram 17 Copyright © Northwoods Software 

provides all of this functionality automatically—the code just needs to create the nodes and add 

them to the view’s document. 

 

This shows how the MinimalApp appears after selecting the two initial nodes, drag-copying 

them, moving them, creating links between some of them, and then renaming a blue one to 

“blue” and a magenta one to “magenta”. 



Windows Forms VB.NET: 

 

Imports Northwoods.Go 

 

Public Class MinimalApp 

  Inherits Form 

  ' constructor 

  Public Sub New() 

    MyBase.New() 

    Me.Text = "Minimal GoDiagram app" 

    ' create a Go view (a RichControl) and add to the form 

    Dim myView As GoView = New GoView() 

    myView.Dock = DockStyle.Fill 

    Me.Controls.Add(myView) 

 

    ' create two nodes for fun... 

    Dim node1 As GoBasicNode = New GoBasicNode() 

    ' specify position, label and color 

    node1.Location = New PointF(100, 100) 

    node1.Text = "first" 

    node1.Editable = True  ' first node is editable with F2 only 

    node1.Shape.BrushColor = Color.Blue 

    ' add to the document, not to the view 

    myView.Document.Add(node1) 

 

    Dim node2 As GoBasicNode = New GoBasicNode() 

    node2.Location = New PointF(200, 100) 

    node2.Text = "second" 

    node2.Label.Editable = True ' second node editable by clicking 

only 

    node2.Shape.BrushColor = Color.Magenta 

    myView.Document.Add(node2) 

  End Sub 

 

  Shared Sub Main() 

    Application.Run(New MinimalApp()) 

  End Sub 

End Class 



GoDiagram 19 Copyright © Northwoods Software 

Windows Forms C#: 

 

using Northwoods.Go; 

 

public class MinimalApp : Form { 

  // constructor 

  public MinimalApp() { 

    this.Text = "Minimal GoDiagram app"; 

    // create a Go view (a Control) and add to the form 

    GoView myView = new GoView(); 

    myView.Dock = DockStyle.Fill; 

    this.Controls.Add(myView); 

 

    // create two nodes for fun... 

    GoBasicNode node1 = new GoBasicNode(); 

    // specify position, label and color 

    node1.Location = new PointF(100, 100); 

    node1.Text = "first"; 

    node1.Editable = true;  // first node is editable with F2 only 

    node1.Shape.BrushColor = Color.Blue; 

    // add to the document, not to the view 

    myView.Document.Add(node1); 

 

    GoBasicNode node2 = new GoBasicNode(); 

    node2.Location = new PointF(200, 100); 

    node2.Text = "second"; 

    node2.Label.Editable = true; // node editable by clicking only 

    node2.Shape.BrushColor = Color.Magenta; 

    myView.Document.Add(node2); 

  } 

 

  [STAThread] 

  public static void Main(string[] args) { 

    Application.Run(new MinimalApp()); 

  } 

} 



 

3. BUILDING APPLICATIONS 

This chapter describes some of the typical tasks involved in building an application using Go. 

Choosing a Model 

Before you start implementing your own application, you should have a clear model in your 

mind for how your “real world” information can be organized into a diagram that could be 

drawn with nodes and links.  Often one of the sample applications that Go provides will look like 

what you want. 

Select Node and Link Types 

Besides the basic graphical objects that Go provides, there are a number of parts that help you 

build diagrams or networks of objects.  In particular, there are several predefined subclasses of 

GoNode that are used by the various sample applications.  Chapter 6. discusses these node 

classes in more detail. 

Depending on the kind of application you are building, one of these existing node classes is likely 

to be close to what you need, even if the appearance isn’t right.  Choose from the supplied node 

classes by deciding if it needs an image and how many ports it should have.  Initially you may 

wish to use them as-is, and concentrate on having the diagram reflect the structure of your “real 

world” model and have it handle user edits.  Later you can customize and elaborate the state, 

appearance, and behavior of the parts and the diagram as a whole. 

Define Property Editors 

Another common task is implementing property-editing forms for each kind of node or link.  

Typically these forms are displayed in response to the F4 key for the primary selection or a 

double click on a node or link. 



GoDiagram 21 Copyright © Northwoods Software 

Depending on the nature of the properties you need to display and allow the user to edit, you 

can either implement custom dialogs, or you can use PropertyGrids.  Both approaches are used 

in the ProtoApp sample in GoDiagram Win. 

Customize Node and Link Appearances 

Eventually you will probably want to add graphics that are specific to the real object the node 

represents.  For example, if the node is a shop floor manufacturing machine, there might be a 

“Stopped” state that might change the appearance of the node so the operator could tell at a 

glance. 

But not all of the interesting information can or should be shown as GoObjects.  For example, 

additional status and a lot of controls for that shop floor manufacturing machine probably 

belong in a dialog. 

Programmatically Creating a Diagram with Nodes and Links 

Users can easily build and modify diagrams if you give them the ability to insert nodes.  But 

often you will want to build a diagram programmatically—where your code will create and 

insert nodes and find and link ports.  Your code will also need to update the persistent data 

storage with changes that the user has made. 

Here are the steps your code will need to take: 

1. Allocate a new instance of a node class 

2. Initialize the new node by setting its properties and calling appropriate methods on it.  

You’ll want to set its Position at this time. 

3. Add the new node to the document. 

4. Repeat to create other nodes. 

5. For each link, first find the proper port on the source node and the proper port on the 

destination port.  This typically involves finding the appropriate source and destinations 

nodes first, and then identifying the desired output and input ports on the respective 

nodes. 

6. Allocate a new instance of a link class 

7. Set its FromPort and ToPort properties, and any other desired properties, and call any 

other initializing methods. 

8. Add the new link to the document. 

9. Repeat to create other links. 



 

C#: 

      GoBasicNode node1 = new GoBasicNode(); 

      node1.Location = new PointF(100, 100); 

      node1.Text = "first"; 

      node1.Shape.BrushColor = Color.Blue; 

      goView1.Document.Add(node1); 

 

      GoBasicNode node2 = new GoBasicNode(); 

      node2.Location = new PointF(200, 100); 

      node2.Text = "second"; 

      node2.Shape.BrushColor = Color.Magenta; 

      goView1.Document.Add(node2); 

 

      GoLink link = new GoLink(); 

      link.ToArrow = true; 

      link.PenColor = Color.Orange; 

      link.FromPort = node1.Port; 

      link.ToPort = node2.Port; 

      goView1.Document.Add(link); 

 

VB.NET: 

    Dim node1 As GoBasicNode = New GoBasicNode() 

    node1.Location = New PointF(100, 100) 

    node1.Text = "first" 

    node1.Shape.BrushColor = Color.Blue 

    goView1.Document.Add(node1) 

 

    Dim node2 As GoBasicNode = New GoBasicNode() 

    node2.Location = New PointF(200, 100) 

    node2.Text = "second" 

    node2.Shape.BrushColor = Color.Magenta 

    goView1.Document.Add(node2) 

 

    Dim link As GoLink = New GoLink() 

    link.ToArrow = True 

    link.PenColor = Color.Orange 

    link.FromPort = node1.Port 

    link.ToPort = node2.Port 

    goView1.Document.Add(link) 

 



GoDiagram 23 Copyright © Northwoods Software 

This is the basic idea whenever you need to build a diagram programmatically—whether the 

real information is contained in a database or file or comes from some other source. 

As you create nodes, you will want to make sure that each node has the key information it 

needs to uniquely identify the ultimate information source.  For example, each node you create 

may want to have a unique label that you can use to look up the right row in a database table.  

Or you could use the node’s UserFlags property or UserObject property for holding the key. 

If you have more than one port on a node, you may need to add similar identifying information 

to each port also. 

Handling Events 

GoView has many properties that control how it appears and how it behaves when the user 

tries to interact with it.  But the bulk of the customization is accomplished by defining event 

handlers.  Although Chapter 5.  discusses GoView properties and event handlers in detail, we 

can give a few examples here. 

If you want to do something when the user double clicks on a node, you might add an 

ObjectDoubleClicked event handler to the view. 

 

VB.NET: 

  Private WithEvents goView1 As GoView = new GoView() 

 

  Protected Sub goView1_ObjectDoubleClicked(ByVal sender As Object, 

      ByVal e As GoObjectEventArgs) Handles 

goView1.ObjectDoubleClicked 

    If Not PointToSelectCheckBox.Checked Then 

      If TypeOf e.GoObject.TopLevelObject Is GoIconicNode Then 

        Dim n As GoIconicNode = CType(e.GoObject.TopLevelObject, 

                                      GoIconicNode) 

        MessageBox.Show("Action invoked on " + n.Text) 

      End If 

    End If 

  End Sub 

 

C#: 

      . . .  // other Form initialization 

      this.goView1 = new GoView(); 

      this.goView1.ObjectDoubleClicked += 

          new 

GoObjectEventHandler(this.goView1_ObjectDoubleClicked); 



      . . . 

 

    private void goView1_ObjectDoubleClicked(object sender, 

                                             GoObjectEventArgs e) { 

      GoObject obj = e.GoObject; 

      // get the top-level object for the object that got 

      // double-clicked and see if it is a BasicLayoutNode 

      BasicLayoutNode n = obj.TopLevelObject as BasicLayoutNode; 

      if (n != null) 

        n.ChangeColor(); // if found, change its color 

    } 

GoObjectEventArgs includes additional information about the input event besides the GoObject 

that it happened at—GoObjectEventArgs.DocPoint describes where the mouse event occurred 

in the document.  The state of the mouse buttons and other information are available as well. 

Other GoView events do not involve any particular mouse or keyboard input.  For example, 

when the current selection is deleted, there are events that occur just before and just after.  The 

SelectionDeleting event is cancelable—setting the CancelEventArgs.Cancel property to true 

avoids removing the selected objects from the document.  The SelectionDeleted event occurs 

after the objects have been removed from the document. 

 

VB.NET: 

Protected Sub goView1_SelectionDeleting(ByVal sender As Object, 

      ByVal evt As CancelEventArgs) Handles 

goView1.SelectionDeleting 

  If MessageBox.Show("Delete " + goView1.Selection.Count + " 

objects?", 

                     "About to delete selection", 

                     MessageBoxButtons.YesNo) = DialogResult.No Then 

      evt.Cancel = True 

  End If 

End Sub 

 

Protected Sub goView1_SelectionDeleted(ByVal sender As Object, 

      ByVal evt As EventArgs) Handles goView1.SelectionDeleted 

  MessageBox.Show(goView1.Document.Count + " objects left") 

End Sub 

 

C#: 

protected void goView1_SelectionDeleting(object sender, 



GoDiagram 25 Copyright © Northwoods Software 

                                         CancelEventArgs evt) { 

  if (MessageBox.Show("Delete " + goView1.Selection.Count+ " 

objects?", 

                      "About to delete selection", 

                      MessageBoxButtons.YesNo) == DialogResult.No) { 

    evt.Cancel = true; 

  } 

} 

 

private void goView1_SelectionDeleted(object sender, EventArgs e) { 

  MessageBox.Show(goView1.Document.Count + " objects left"); 

} 

Following the .NET convention for naming and defining events, you are encouraged to override 

the protected GoView.On… method for an event instead of adding an event handler, if you have 

defined your own subclass of GoView.  The behavior is the same but more efficient; 

furthermore the code is then naturally part of the view rather than jumbled together with other 

code in the form.  Remember to call the base method to make sure all event handlers get called. 

 

VB.NET: 

Protected Overrides Sub OnObjectGotSelection(ByVal evt 

                                             As 

GoSelectionEventArgs) 

  MyBase.OnObjectGotSelection(evt) 

  If Not myPrimarySelection Is Me.Selection.Primary Then 

    myPrimarySelection = Me.Selection.Primary 

    ' update the toolbar to match the selection 

    MainForm.App.EnableToolBarEditButtons(Me) 

  End If 

End Sub 

 

C#: 

protected override void OnObjectGotSelection(GoSelectionEventArgs 

evt) { 

  base.OnObjectGotSelection(evt); 

  if (myPrimarySelection != this.Selection.Primary) { 

    myPrimarySelection = this.Selection.Primary; 

    // update the toolbar to match the selection 

    MainForm.App.EnableToolBarEditButtons(this); 

  } 

} 



However there are also events that occur not as the result of any direct user interaction, but due 

to changes to a document or to objects in a document.  These programmatic events are 

GoDocument.Changed events.  To make it easier to define document change event handlers, 

these GoDocument events are passed through by GoView as GoView.DocumentChanged 

events. 

For example, the following event handler notices when any code inserts a node into the 

document and updates a ComboBox correspondingly. 

 

VB.NET: 

  Private Sub goView1_DocumentChanged(ByVal sender As Object, 

        ByVal e As GoChangedEventArgs) Handles 

goView1.DocumentChanged 

    Select Case e.Hint 

      Case GoLayer.InsertedObject 

        ' added a node to the document--gotta add it to 

        ' the combobox's list of nodes 

        If TypeOf e.Object Is IGoNode Then 

          Dim n As IGoNode = CType(e.Object, IGoNode) 

          If Not n.UserObject Is Nothing Then 

            Me.NodeCombo.Items.Add(n.UserObject) 

          End If 

        End If 

      . . .  ' other kinds of cases 

    End Select 

  End Sub 

 

C#: 

  private void goView1_DocumentChanged(object sender, 

                                       GoChangedEventArgs e) { 

    switch (e.Hint) { 

    case GoLayer.InsertedObject: { 

        // added a node to the document--gotta add it to 

        // the combobox's list of nodes 

        IGoNode n = e.Object as IGoNode; 

        if (n != null && n.UserObject != null) { 

          this.NodeCombo.Items.Add(n.UserObject); 

        } 

        break; 

      } 

      . . .  // other kinds of changes 



GoDiagram 27 Copyright © Northwoods Software 

    } 

  } 

You can get the exact same results more efficiently by defining your own GoDocument subclass 

and overriding GoDocument.OnChanged. 

Traversing a Diagram 

This section includes some examples of how to traverse a diagram.  A diagram is normally 

implemented with GoObject classes such as GoTextNode and GoPort and GoLabeledLink.  

However, a more abstract way of dealing with nodes and links is provided by several interfaces: 

IGoNode, IGoPort, IGoLink.  You can define general graph traversing algorithms without having 

to worry about the exact classes used to implement the parts of the graph. 

IGoNode 

IGoNode represents an abstract node, containing one or more IGoPorts.  The IGoNode.Ports 

property provides an enumerable so that you can iterate over all of the ports of a node. 

To make it more convenient to get to all of the links connected to a node, regardless of the port 

that they are connected to, there are some properties that provide enumerators over links.  The 

IGoNode.Links property lets you iterate over all of the links connected at a node; the 

IGoNode.SourceLinks and IGoNode.DestinationLinks properties just enumerate over the links 

coming into or going out of a node. 

Finally to make it more convenient to get to all of the nodes that are connected to a node, the 

IGoNode.Nodes property provides an enumerator for iterating over all of the nodes that have 

any direct connection to any port of a node.  Again, if you only want to consider those nodes 

that are at one particular end of directed links, you can use the IGoNode.Sources and 

IGoNode.Destinations properties. 

IGoPort 

IGoPort represents a part of a node that is like a socket for holding the ends of some IGoLink 

connections.  The IGoPort.Links property gets an enumerable to iterate over all of the links 

connected at an abstract port.  Because links usually considered to be directed, the 

IGoPort.SourceLinks and IGoPort.DestinationLinks properties let you iterate over only those 

links coming into or going out of a port. 

You can also manipulate an abstract port by using the IGoPort.AddSourceLink, 

IGoPort.AddDestinationLink, IGoPort.RemoveLink, and IGoPort.ContainsLink methods. 

IGoPort.Node is a property to allow you to navigate from a port to its containing node. 



IGoPort also defines three predicates that are useful in deciding whether it is valid to create a 

link between two ports.  The IGoPort.IsValidLink predicate is the primary method; the 

IGoPort.CanLinkFrom and IGoPort.CanLinkTo predicates are typically called by implementations 

of IsValidLink to see if there are any port-specific reasons why a link should not be permitted, in 

addition to the decisions that IsValidLink should make considering both ports. 

IGoLink 

IGoLink represents a connection between two IGoPorts.  It defines two properties, the 

IGoLink.FromPort and IGoLink.ToPort, as the principal properties of any link.  For convenience, 

the IGoLink.FromNode and IGoLink.ToNode properties are also defined, to return the 

IGoPort.Node property of the corresponding port. 

The IGoLink.FromPort and IGoLink.ToPort properties are defined to be settable.  The 

IGoLink.Unlink method is defined to disconnect the link from both ports and remove the link 

from any container. 

To make it easier to traverse graphs by following links in either direction, IGoLink defines two 

methods for getting from one end of the link to the other, without assuming which end you 

have to begin with:  IGoLink.GetOtherPort and IGoLink.GetOtherNode. 

IGoGraphPart 

IGoGraphPart is the base interface for the IGoNode, IGoPort, and IGoLink interfaces.  It defines 

the GoObject property for getting an object that may be part of a GoDocument.  It also defines 

the UserFlags and UserObject properties that may be implemented by classes to hold an integer 

and an object associated with the part of the diagram. 

There are standard implementations of these interfaces that are also GoObjects: GoNode 

implements IGoNode, GoPort implements IGoPort, and GoLink and GoLabeledLink implement 

IGoLink.  Since any instance of GoNode, GoPort, GoLink, or GoLabeledLink are also instances of 

GoObject, the IGoGraphPart.GoObject property just returns itself.  All of these classes also 

provide storage for the UserFlags and UserObject properties that you can set. 

Simple Traversal Examples 

Iterating over all of the nodes in a document: 

VB.NET: 

  For Each obj In aDocument 

    If TypeOf obj Is IGoNode Then 

      Dim n As IGoNode = CType(obj, IGoNode) 

      ' do something with the IGoNode n, typically a GoNode 



GoDiagram 29 Copyright © Northwoods Software 

    End If 

  Next obj 

C#: 

  foreach (GoObject obj in aDocument) { 

    IGoNode n = obj as IGoNode; 

    if (n != null) { 

      // do something with the IGoNode n, typically a GoNode 

    } 

  } 

 

Alternatively, if you know the node class you are looking for: 

VB.NET: 

  For Each obj In aDocument 

    If TypeOf obj Is GraphNode Then 

      Dim n As GraphNode = CType(obj, GraphNode) 

      ' do something with the GraphNode n 

    End If 

  Next obj 

C#: 

  foreach (GoObject obj in aDocument) { 

    GraphNode n = obj as GraphNode; 

    if (n != null) { 

      // do something with the GraphNode n 

    } 

  } 

 

Iterating over all of the links in a document: 

VB.NET: 

  For Each obj In aDocument 

    If TypeOf obj Is IGoLink Then 

      Dim link As IGoLink = CType(obj, IGoLink) 

      ' do something with the IGoLink link, 

      ' which is typically a GoLink or a GoLabeledLink 

    End If 

  Next obj 



C#: 

  foreach (GoObject obj in aDocument) { 

    IGoLink link = obj as IGoLink; 

    if (link != null) { 

      // do something with the IGoLink link, 

      // which is typically a GoLink or a GoLabeledLink 

    } 

  } 

 

Alternatively, if you know the link class you are looking for: 

VB.NET: 

  For Each obj In aDocument 

    If TypeOf obj Is GraphLink Then 

      Dim link As GraphLink = CType(obj, GraphLink) 

      ' do something with the GraphLink link, 

    End If 

  Next obj 

C#: 

  foreach (GoObject obj in aDocument) { 

    GraphLink link = obj as GraphLink; 

    if (link != null) { 

      // do something with the GraphLink link, 

    } 

  } 

Selecting all the nodes directly connected to a node labeled “Rome”: 

VB.NET: 

  Dim obj As GoObject = aView.Document.FindNode(“Rome”) 

  If TypeOf obj Is CityNode Then 

    Dim rome As CityNode = CType(obj, CityNode) 

    For Each node In rome.Nodes 

      If TypeOf node.GoObject Is CityNode Then 

        aView.Selection.Add(node.GoObject); 

      End If 

    Next node 

  End If 

C#: 

  CityNode rome = aView.Document.FindNode(“Rome”) as CityNode; 



GoDiagram 31 Copyright © Northwoods Software 

  if (rome != null) { 

    foreach (IGoNode n in rome.Nodes) { 

      if (n.GoObject is CityNode) 

        aView.Selection.Add(n.GoObject); 

    } 

  } 

 

Finding all direct flights from one city to another: 

VB.NET: 

  Dim orig As CityNode = CType(aDocument.FindNode(“Madrid”), 

CityNode) 

  Dim dest As CityNode = CType(aDocument.FindNode(“Berlin”), 

CityNode) 

  Dim results As GoCollection = new GoCollection() 

  For Each l in orig.DestinationLinks 

    If l.ToNode Is dest Then 

      results.Add(l.GoObject) 

    End If 

  Next l 

C#: 

  CityNode orig = aDocument.FindNode(“Madrid”) as CityNode; 

  CityNode dest = aDocument.FindNode(“Berlin”) as CityNode; 

  GoCollection results = new GoCollection(); 

  foreach (IGoLink l in orig.DestinationLinks) { 

    if (l.ToNode == dest) 

      results.Add(l.GoObject); 

  } 

 

More Complex Traversals 

The NodeLinkDemo sample includes code that finds and highlights the longest path(s) of nodes 

coming out of a selected node.  The code, in the GraphView class, demonstrates one technique 

for finding the distance from a root node for all of the nodes that are reachable from that root 

node.  It keeps the distances in a Hashtable, and uses an ArrayList to remember the current 

path as it is traversing the diagram in order to avoid cycles. 

Once it finds the nodes that are the furthest away from the root node, it walks backwards from 

those nodes, through the source links, highlighting the actual GoLink or GoLabeledLink as it 

goes. 



Of course, this is only one implementation of one variation of a path-finding algorithm.  Many 

other kinds of path-finding tasks are needed for various applications, and there are many other 

kinds of graph algorithms that you may find useful.  If you don’t already know what you need to 

do, there are many books available that discuss these issues. 

There are some static/shared methods on GoDocument that are used to implement the 

GoDocument.ValidCycle property: MakesDirectedCycle, MakesDirectedCycleFast, 

MakesUndirectedCycle.  These methods are called by GoPort.IsValidLink to see if there are any 

kinds of cycles that might be introduced into the graph. 

Supporting Save and Load 

Go does not have a standard file format that you have to use.  For your diagrams, you will need 

to implement code to save to and load from whatever data store is appropriate for your 

application the information that the diagram represents.  A number of samples implement 

persistence using a simple custom XML format.  You can read more about GoXml and the 

GoXmlBindingTransformer class in a later chapter in this User Guide.  The DataSetDemo sample 

demonstrates two-way updating with a DataSet. 

Node and link specific data can initially be stored in the UserObject property for nodes and links.  

(This property is just like the Tag property for TreeNodes, but there is also a UserFlags property 

for storing an integer efficiently.) Later you may want to create subclasses that have fields 

holding this information. 

When it is time to store the diagram, you can traverse the diagram looking at all of the nodes.  

For each node that has key identifier information, use the key to find the corresponding record, 

and update the record appropriately.  Each node that does not have this key information you 

will know to be a new node, and you can insert a new record. 

Determining which records to delete can be achieved in several ways.  For example, you can 

query the database to get all of the records.  You can delete each record for which no node 

exists that has the corresponding key information. 

An alternative method for determining which records to delete is to keep track of which nodes 

are deleted.  Add a document Changed event handler (or equivalently, override 

GoDocument.OnChanged or override GoView.OnDocumentChanged) to detect events with a 

GoLayer.RemovedObject hint.  If the object is the right kind of node class, remember either a 

reference to the node or the key information, in a list of deleted nodes or deleted keys.  Then 

the diagram storage process just needs to run through the list and delete the corresponding 

records, followed by clearing out the list. 



GoDiagram 33 Copyright © Northwoods Software 

To simplify the generation of unique IDs for nodes and ports and links, GoDocument has a 

property that automatically makes sure that each node, port, or link that is added to the 

document has a unique PartID.  Just set the GoDocument.MaintainsPartID to true.  All objects 

that implement the IGoIdentifiablePart interface provide a PartID property; this is set by 

GoDocument as objects are added to the document. 

When you need to refer to objects, such as to the ports of a link that you are storing, you can 

just pass the PartID.  Upon loading, you can find the IGoIdentifiablePart in the document with 

that ID by calling GoDocument.FindPart.  Remember to save the LastPartID in your document 

too, to avoid any possible duplicate PartIDs. 

Of course, you can implement your own mechanism for keeping track of identities, instead of 

using PartID.  Typically you will have one or more hash tables used to map key values to nodes 

and perhaps ports if there might be more than one port in a node. 



4. DOCUMENTS AND GOOBJECTS 

GoDocument 

GoDocument represents a group of GoObjects that can be displayed by a GoView. GoDocument 

represents the model in the model-view-controller architecture; GoView and GoTool play the 

role of the view and controller.  

A document is a collection of objects, organized into layers.  The layers are ordered.  The layers 

are drawn in sequential order, so objects in layers toward the beginning of the list of layers are 

drawn first and thus appear "behind" objects that are in later layers. You can add, remove, and 

iterate over the document's objects by using the document's implementation of the 

IGoCollection interface 

In addition to all of the objects held by the document, the document has its own notion of the 

background color, called the paper color. This is independent of and takes precedence over the 

GoView background color (i.e. Control.BackColor). By default the document has no paper color 

(Color.Empty), so the view’s BackColor will appear.  But when the document has a non-empty 

paper color, all views will use that paper color as the background. 

For your convenience, each document has a Name property that you may use for identification 

purposes.  Initially it is an empty string.  The Name property is used as the document name 

when printing. 

GoDocument also supports undo and redo by cooperating with a GoUndoManager that 

observes and records changes to the document. 

Layers 

A layer is just a collection of GoObjects.  Although you normally think of a document as owning 

the objects in it, actually a document directly owns only an instance of GoLayerCollection, which 

is a collection of GoLayers. Each layer in turn owns all of the objects in its collection.  Each 

GoObject can be part of at most one GoLayer. 



GoDiagram 35 Copyright © Northwoods Software 

When you have created an instance of a GoObject, you’ll want to add it to a document by calling 

the GoDocument.Add method.  This actually adds the object to a particular layer in the 

document, the GoDocument.DefaultLayer, unless it implements IGoLink, in which case it adds 

the link to the GoDocument.LinksLayer.  You may wish to ensure an object appears in front of 

or behind other objects.  If so, you should make sure the appropriate layer exists and then Add 

the object to that layer. 

You can use the GoLayer.AddCollection method for adding a collection of objects to a layer.  

This method can even move objects from within GoGroups to be top-level objects, without 

disconnecting any links as would normally happen if objects are first Removed and then Added. 

You can affect the ordering of objects within a layer by calling the GoLayer.MoveBefore or 

MoveAfter methods.  If you want to inquire about the relative ordering of some objects, you 

can call the GoLayerCollection.SortByZOrder method to sort a given array of GoObjects.  (This 

method does not modify the ordering or layers for any objects.) 

Initially a document has one layer that is used for holding all objects added to the document.  

Documents also support the notion of a layer for holding all links that the user creates.  This 

GoDocument.LinksLayer property is the layer to which the linking tool adds newly created links.  

By default, since there is initially only one layer in a document, this layer will be the same as for 

all other objects in the document.  When there is only one layer, you cannot be sure whether 

links will appear in front of or behind any nodes.  But if you explicitly create a new layer and 

assign the LinksLayer property to this new layer, you can control this appearance.  For example, 

doc.LinksLayer = doc.Layers.CreateNewLayerAfter(doc.Layers.Default) 

will ensure that all user drawn links will appear in front of all nodes inserted in the default layer.  

You should always add programmatically created links into the document’s links layer, using a 

call such as: 

doc.LinksLayer.Add(aNewLink) 

Enumerating the objects in a layer can be done either forwards or backwards, because 

IGoCollection supports both regular (forwards) and backwards iteration.  Both directions are 

needed so that painting can be done in the opposite direction from picking.  This ensures that 

the user will always pick the front-most object that can be seen at a particular spot. 

For example, the following code finds a graphical object in the document’s default layer that is 

the furthest left (i.e. has the smallest X coordinate).  It ignores objects in other layers. 

 

VB.NET: 

    Dim leftx As Single = 1.0E+20 F 

    Dim leftmost As GoObject = Nothing 



    Dim obj As GoObject 

    For Each obj In doc.DefaultLayer 

      If obj.Left < leftx Then 

        leftx = obj.Left 

        leftmost = obj 

      End If 

    Next 

 

C#: 

    float leftx = 1.0e20f; 

    GoObject leftmost = null; 

    foreach (GoObject obj in doc.DefaultLayer) { 

      if (obj.Left < leftx) { 

        leftx = obj.Left; 

        leftmost = obj; 

      } 

    } 

You can programmatically find the front-most object at a particular point by calling 

GoDocument.PickObject.  To find some or all of the objects at a point, even if hidden behind 

some objects, you can use the GoDocument.PickObjects method.  (GoLayer and GoView also 

have similar methods.) 

In order to support the GoLink.AvoidsNodes property, each GoDocument can keep track of 

where “avoidable” nodes are.  The GoDocument.IsAvoidable predicate and 

GetAvoidableRectangle method determine which document objects to consider avoidable and 

what their effective bounds are.  By default all objects implementing IGoNode are considered 

avoidable. 

You can programmatically ask if a particular rectangular area may have any avoidable objects in 

it with the GoDocument.IsUnoccupied predicate. 

The use of this avoidance functionality can be computationally expensive, so you should only 

use it when it is necessary. 

Layers are normally owned by documents, but some layers will be owned by views instead.  

Objects owned by layers owned by documents are called “document objects”; those in layers 

owned by views are called “view objects”.   GoObject.Document and GoLayer.Document are 

both non-null for document objects.  The same holds for GoObject.View and GoLayer.View and 

view objects.  Use GoObject.IsInDocument or GoLayer.IsInDocument to determine if something 

is a document object or a document layer.  Note that GoObject.IsInDocument will be true if the 

object is in any layer of the document. 



GoDiagram 37 Copyright © Northwoods Software 

Layer Abilities 

Layers also implement the IGoLayerAbilities interface, which defines the properties and 

methods used by Go to determine if the user may perform certain operations.  These are: 

• CanSelectObjects, AllowSelect 

• CanMoveObjects, AllowMove 

• CanCopyObjects, AllowCopy 

• CanResizeObjects, AllowResize 

• CanReshapeObjects, AllowReshape 

• CanDeleteObjects, AllowDelete 

• CanInsertObjects, AllowInsert 

• CanLinkObjects, AllowLink 

• CanEditObjects, AllowEdit 

GoDocument and GoView also implement IGoLayerAbilities, so one can declaratively control 

the behavior of objects in a layer or in all layers of a document by setting the AllowACT property 

(for any ability ACT), or one can override the implementation of the CanACTObjects method.  

Most of these abilities also apply to individual GoObjects; inserting and linking do not because 

they do not involve exactly one object. 

As an example, GoView.CanDeleteObjects() will be true if GoView.AllowDelete is true and if the 

view’s document’s CanDeleteObjects() is true.  The AllowDelete property is a browsable one, so 

that you can easily disable deleting objects in a particular view by editing its properties in your 

.NET IDE. 

GoDocument.CanDeleteObjects() will be true if GoDocument.AllowDelete is true. 

GoLayer.CanDeleteObjects() will be true if GoLayer.AllowDelete is true and if the layer’s 

document’s CanDeleteObjects() is true. 

GoObject.CanDelete() will be true if GoObject.Deletable is true and if the object’s layer’s 

CanDeleteObjects() method is true.   

Thus you can make an object not deletable by the user by setting a property to false at one or 

more of three different levels of the document object hierarchy: object, layer, and document.  

Furthermore you can make all objects not deletable for a particular view (but not necessarily for 

other views on the same document) by setting the view’s AllowDelete property to false. 



For convenience, the SetModifiable method allows one to set the move, resize, reshape, delete, 

insert, link, and edit ability properties all at once. 

Layers have an identifier property that you can use to distinguish different layers.  The layer that 

every document starts off with as the default layer has an identifier that is the Integer zero, but 

otherwise each layer initially has no identifier. 

Document Coordinates and Size 

The GoObjects held in the document have a size and position. The coordinate system used by 

the document is the same as the default coordinate system for controls, i.e. positive coordinates 

increase rightwards and downwards and each unit corresponds to a pixel. GoViews have a 

coordinate system that may be translated and scaled from that of the document, so as to 

support panning and zooming. 

Document coordinates use single (float) values.  Thus GoObject sizes and offsets are held by 

SizeF structures, positions by PointF structures, and bounds by RectangleF structures.  View 

coordinates, like all Control coordinates, use integer values (and thus Size, Point, and Rectangle 

structures). 

The document's size is automatically expanded to encompass all of its objects.  Normally a 

document has all of its objects at positive coordinates (i.e., the lower right quadrant).  However, 

if there are objects with negative coordinates, the GoDocument.TopLeft property will indicate 

the actual “origin”.  This property combined with the GoDocument.Size property gives the full 

extent of all of the objects in the document.  It is possible to set either of these properties, but 

by default they will automatically get re-set as existing objects are moved or resized or as new 

objects are added.  If you want to keep the document Size and TopLeft properties constant, 

regardless of where any objects are placed in the document, you can set the 

GoDocument.FixedSize property to true.  If you need different behavior, you will need to 

override GoDocument.UpdateDocumentBounds, which is responsible for keeping the 

document size and top-left up-to-date as objects are changed or added. 

The normal behavior is that the Size property is increased to accommodate objects that are 

placed beyond where they had been before.  However, the Size property does not automatically 

shrink—not even when all of the objects in the document are removed and the document is 

empty.  The Size property also always includes the (0, 0) point.  If you want to find out how 

much coordinate space all of a document’s objects are actually taking, use the 

GoDocument.ComputeBounds method.  This method calculates the union of the bounds of all 

of the document objects for which GoObject.CanView() is true, or for which 

GoObject.CanPrint() is true when the GoView.IsPrinting property is true.  If you want to 

automatically shrink the document’s extent as objects are moved or removed, you will need to 



GoDiagram 39 Copyright © Northwoods Software 

override GoDocument.OnChanged to notice when objects are removed, and override 

UpdateDocumentBounds to calculate any extent adjustments. 

Events 

GoDocument produces one event, Changed.  Following the standard naming conventions, the 

GoChangedEventArgs class provides a description of any changes to a document, and the 

delegate GoChangedEventHandler takes a GoChangedEventArgs as a second argument.   

Each GoView adds a GoChangedEventHandler delegate to its document, resulting in calls to 

GoView.OnDocumentChanged.  Each view needs to notice when documents and document 

objects change so that it can update the visible rendering of that document and those objects. 

You can register your own event handlers to notice changes to the document or its objects. 

The default implementation of GoDocument.OnChanged invokes all of the document’s event 

handlers.  Normally, though, you will call the GoDocument.RaiseChanged method to take care 

of notifying event handlers.  This method calls OnChanged but is more efficient and easier to call 

because you won’t have to construct a GoChangedEventArgs argument.  RaiseChanged puts its 

arguments into an instance of GoChangedEventArgs before calling OnChanged.  You can 

override OnChanged or RaiseChanged if you want your document subclass to always respond to 

certain Changed events without having to register an event handler with itself.  But as always, 

you need to remember to call the base class’s implementation of those methods to make sure 

the rest of the system gets notified as expected. 

GoChangedEventArgs is the class that represents an event for a document; it inherits from 

System.EventArgs.  Besides remembering which document the event occurred for, it also 

remembers the kind of event, the new state value, and the old state value.  The kind of event is 

described by the GoChangedEventArgs.Hint property, an integer.  Some event hints, such as 

GoDocument.ChangedPaperColor, relate to the document itself.  Other event hints apply to 

layers, such as GoLayer.ChangedAllowDelete, GoLayer.InsertedObject, and 

GoLayer.RemovedObject.  Finally, other kinds of event hints pertain only to GoObjects, such as 

GoLayer.ChangedObject. 

For some kinds of event hints, there is additional information that further describes the event.  

In particular, the GoLayer.ChangedObject event hint has an object specific sub-hint describing 

the exact kind of change and a previous value.  For example, the GoText class has a Bold 

property.  When the Bold property is changed, the setting method calls 

GoDocument.RaiseChanged with an event Hint of GoLayer.ChangedObject and a 

GoChangedEventArgs.SubHint of GoText.ChangedBold. 



RaiseChanged is called just once for each separate change.  Thus after generating a Changed 

event describing a GoText object whose Bold property changed, there is no need for another 

Changed event saying that the text object’s document was changed also. 

Each GoChangedEventArgs instance also holds any appropriate new and previous value 

information, so that the undo manager can record undo/redo information.  This topic is covered 

in detail in Chapter 7.  

The GoDocument.IsModified property is set to true by GoDocument.OnChanged.  You will need 

to set this property to false whenever you store or reload your document. 

Copying 

You can add a copy of a collection of objects to a document by calling 

GoDocument.CopyFromCollection.  This method makes copies of objects and maintains the 

relationships between them in the new copies.  It also tries to preserve the layers of the original 

objects in the copies. 

The way objects are copied is controlled by the GoObject.CopyObject methods of all the copied 

objects and by the GoCopyDictionary.  A GoCopyDictionary is created (by 

GoDocument.CreateCopyDictionary if you don’t create one and provide it) each time you want 

to copy one or more objects.  It holds the results of the copying, mapping old objects to new 

objects.  The copy dictionary, which is returned by CopyFromCollection, can be used afterwards 

to make changes to the copies or to select them. 

The argument to GoDocument.CopyFromCollection is an IGoCollection.  GoDocument, 

GoLayer, and GoSelection all implement IGoCollection, so it is easy to add a copy of all the 

objects in each of those kinds of collections into a document. 

For most uses, the copy dictionary does not need to be initialized with any objects—the copy 

dictionary created by default is satisfactory.  The copy dictionary is used to keep track of all 

copied objects, so that shared objects are not copied multiple times. 

However, there are times when you don’t want to create a new copy of an object because you 

want to use an already existing object in the destination document.  Any references to the 

object in the source collection should be replaced by references to the existing destination 

object in the copied collection.  You can achieve this effect by manually creating a 

GoCopyDictionary and initializing it so that the source object in question is mapped to the 

desired existing destination object.  You then call CopyFromCollection passing in the initialized 

GoCopyDictionary.  The copying process will notice that there is already a destination object in 

the copy dictionary, as if it had already been copied, and thus will not allocate a new object. 



GoDiagram 41 Copyright © Northwoods Software 

CopyFromCollection has some additional parameters that govern how it copies the objects in 

the argument collection.  You can tell it to only copy objects whose CanCopy predicate is true.  

For objects that are not top-level, you can tell it to copy the object that would be dragged 

(presumably the parent node) rather than the individual child.  And you can tell it to change the 

locations of the copied objects by a given offset. 

If the original object belonged to a GoLayer, CopyFromCollection tries to add the copy in the 

destination document’s layer that has the same identifier.  If no such layer can be found, it is 

added to the GoDocument.DefaultLayer. 

If you just want to add to a document a copy of a single object, you can use the 

GoDocument.AddCopy method, which just calls CopyFromCollection. 

Persistence and Serialization 

The built-in GoDocument and GoObject classes are Serializable.  You should use serialization for 

short-term persistence and communication using the same version of the Go library.  

Northwoods does not recommend using serialization for long-term persistence to save diagrams 

that the user has edited.  Besides the incompatibilities that arise when you change your 

application, serialized documents often contain much information that really should not be 

stored, because they describe the visual representation of the information rather than the 

abstract information that really matters. 

For longer persistence, you will typically be loading from and storing into an existing database or 

file.  Your code, which may include your GoDocument subclass and perhaps your GoObject 

subclasses, will then be responsible for transforming the real information into a network of 

GoObjects.  Any user driven or programmatic changes to these objects must then be 

transformed back into the database’s representation of the information.  If the document 

permits any independent changes to the underlying database, you will need to be notified of 

those changes so that you can keep your document, and thus your views, up-to-date. 

Some of the sample applications demonstrate how to read and write graphs to a simple XML file 

format. 

Serialization, however, is used for cut/copy/paste operations to copy to the clipboard or to 

paste from the clipboard. The data format is specified by GoDocument.DataFormat, and 

defaults to the full qualified name of the GoDocument type. 

For copy and paste to work, you must make sure your GoDocument and GoObject derived 

classes have the Serializable attribute: 

 

VB.NET: <Serializable()> Public Class TestNode 



C#: [Serializable] public class TestNode 

Furthermore you must make sure your fields are all Serializable.  If they cannot be serialized, 

you can declare each field to be NonSerialized: 

 

VB.NET: <NonSerialized()> Private myPath As GraphicsPath = Nothing 

C#: [NonSerialized] private GraphicsPath myPath = null; 

You will then need to make sure your code can handle a nothing/null value for this field—when 

the object is deserialized this field will get the default value for its type. 

Sometimes you will have a copy and paste error because you forget to mark some classes or 

their fields with the appropriate attributes.  One way to discover what you missed is create a 

document with instances of all kinds of objects in it, and then to call the 

GoDocument.TestSerialization() method and note what exceptions occur.  That method 

serializes and deserializes to an in-memory stream.  You can do the same to and from a file: 

C#: 

Stream ofile = File.Open("test.graph", FileMode.Create); 

IFormatter oformatter = new BinaryFormatter(); 

oformatter.Serialize(ofile, myView.Document); 

ofile.Close(); 

Stream ifile = File.Open("test.graph", FileMode.Open); 

IFormatter iformatter = new BinaryFormatter(); 

GoDocument doc = iformatter.Deserialize(ifile) as GoDocument; 

ifile.Close(); 

goView1.Document = doc; 

 

VB.NET: 

Dim ofile As Stream = File.Open("test.graph", FileMode.Create) 

Dim oformatter As IFormatter = New BinaryFormatter() 

oformatter.Serialize(ofile, myView.Document) 

ofile.Close() 

Dim ifile As Stream = File.Open("test.graph", FileMode.Open) 

Dim iformatter As IFormatter = New BinaryFormatter() 

Dim doc As GoDocument = CType(iformatter.Deserialize(ifile), 

GoDocument) 

ifile.Close() 

goView1.Document = doc 

Presumably you will be able to debug any exceptions that occur and figure out what source code 

changes are needed. 



GoDiagram 43 Copyright © Northwoods Software 

GoObject 

GoObject is the superclass of all objects that can be contained in a GoLayer/GoDocument or a 

GoView and that can be displayed in a view.  

GoObjects are very efficient in space and time compared with controls.  

Bounding Rectangle and Location 

Each GoObject has a size and a position, in document coordinates.  There are many properties 

relating to the bounding rectangle.  All ultimately depend on the GoObject.Bounds property.  

The properties are: 

• Bounds – the bounding rectangle, a RectangleF 

• Position – the top left corner of the bounds, a PointF 

• Size – the dimensions of the bounds, a SizeF 

• Center – the center point of the bounds, a PointF 

• Left – the X coordinate of the left edge of the bounds 

• Top – the Y coordinate of the top edge of the bounds 

• Width – the horizontal distance between the left and right edges 

• Height – the vertical distance between the top and bottom edges 

• Right – the X coordinate of the right edge of the bounds, a single or float value that will 

be at least as large as the value of Left 

• Bottom – the Y coordinate of the bottom edge of the bounds, a single or float value that 

will be at least as large as the value of Top 

• Location – the customizable position of the object, a PointF 

Override setting Bounds itself if you want to prevent certain bounds changes from happening at 

all. 

If you want to constrain where an object can be moved, you may find it best to override 

ComputeMove, which is called by DoMove, which is called by GoView.MoveSelection. 

If you want to constrain how an object is resized, you may find it best to override 

ComputeResize, which is called by DoResize, which is called by GoToolResizing.DoResizing. 

Although normally one can think of the location of an object being the same as the Position 

value at the top left corner, that location might not be natural for some objects. Thus each 

object has its own notion of Location; by default this is the same as the Position.   For example, 



GoText overrides GoObject.Location to use the text alignment in determining the natural 

position of the object, and a GoBasicNode’s location is the center of its Shape (typically an 

ellipse).  Moving objects normally uses the Location rather than the Position. 

There are a number of convenience methods for dealing with the standard nine spots of an 

object (corners, middles of sides, and center), and for repositioning two objects so that their 

particular user-specified spots coincide.  

For example, the following code moves a label so that it is centered underneath an icon, 

touching it: 

aLabel.SetSpotLocation(MiddleTop, anIcon, MiddleBottom) 

The standard spots are: 

• Middle – corresponding to the center of the bounding rectangle 

• TopLeft 

• MiddleTop 

• TopRight 

• MiddleRight 

• BottomRight 

• MiddleBottom 

• BottomLeft 

• MiddleLeft 

The spot locations are also used to identify the standard resize handles.  There are also NoSpot 

and NoHandle values for situations where there is no particular spot or handle. 

When the Location is not the top-left corner of the bounding rectangle, changing either the Size 

or the Position will implicitly change the Location.  To avoid having to make two changes when 

programmatically resizing an object, you can call the GoObject.SetSizeKeepingLocation method. 

Other Properties 

Each object has a number of boolean properties:  

• Visible -- can this object be seen in a view 

• Printable – will this object be printed 

• Selectable -- can the user select this object, if also visible 

• Movable -- can the user move this object 



GoDiagram 45 Copyright © Northwoods Software 

• Copyable – can the user make a copy of this object 

• Resizable -- can the user change the size of this object 

• Reshapable – can the user change the shape of this object 

• Deletable – can the user remove this object from the document 

• Editable -- can the user bring up a control to modify this object 

• AutoRescales – if the size is changed, should it scale all its parts appropriately (for 

GoText, this means choosing a new Font size) 

• ResizesRealtime – can the user see the object dynamically change size during 

resizing, instead of resizing a simple rectangle 

• Shadowed – should this object be painted with a drop shadow 

• InvalidBounds – should getting the Bounds call ComputeBounds in order to 

determine the correct bounds 

• SkipsUndoManager –instructs the undo manager to stop recording information 

from events for this object 

• DragsNode – whether this selected object, when moved, should move the parent 

node (or top-level object) instead 

• Initializing – whether the object is in the process of being initialized, copied, or 

being undone or redone 

• BeingRemoved – true during the process of removing an object from a layer or 

group 

Not all kinds of objects support all of these properties, but almost all do. 

Remember that properties such as Selectable and Movable just control the standard built-in 

behavior that Go views allow the user to do interactively using the mouse and/or key 

commands.  You can always select or move objects programmatically, regardless of the property 

values, by explicitly calling methods such as GoView.Selection.Add and setting 

GoObject.Position. 

Copying 

If you want to add a copy of an object to a document, you can call GoDocument.AddCopy.  If 

you want to make a copy of a single object without adding it to a document, you can call 

GoObject.Copy().   This method just uses an instance of a standard GoCopyDictionary, in case 

there are references between child objects. 



CopyObject is a method that is called by the copying process to provide a standardized way of 

transferring information to copies of objects.  As you add fields to your subclasses, you will want 

to make sure the fields are copied appropriately when the object is copied.  Your override of 

CopyObject should first call base.CopyObject; you can then modify the fields of the returned 

value. 

The default implementation of CopyObject uses MemberwiseClone to make a copy of the 

object, which will automatically copy the values of all of the fields.  It does not call a zero-

argument constructor, which might not exist for the class.  However, this can lead to unintended 

sharing of objects for fields that are references.  It is important to make sure that you explicitly 

copy such field values in a way that is safe for your intended usage. 

For example, the GoStroke class has a field that is an array of points.  The GoStroke.CopyObject 

method explicitly makes a copy of that array so that modifying the points of the original stroke 

does not modify the copy, and vice-versa. 

 

VB.NET: 

  Public Overrides Function CopyObject(ByVal env As 

GoCopyDictionary) 

        As GoObject 

    Dim newobj As GoStroke = CType(MyBase.CopyObject(env), GoStroke) 

    If Not newobj Is Nothing Then 

      newobj.myPoints = CType(myPoints.Clone(), PointF()) 

      ' . . .  

    End If 

    Return newobj 

  End Function 

 

C#: 

  public override GoObject CopyObject(GoCopyDictionary env) { 

    GoStroke newobj = (GoStroke)base.CopyObject(env); 

    if (newobj != null) { 

      newobj.myPoints = (PointF[])myPoints.Clone(); 

      . . . 

    } 

    return newobj;  

  } 

The copy dictionary argument to CopyObject is used to keep track of original objects and their 

copies. 



GoDiagram 47 Copyright © Northwoods Software 

CopyObject should return nothing/null when an object should not be copied.  It should also 

return nothing/null if a copy is not necessary because the object is present in the copy 

dictionary.  Only when a new copy has been allocated should CopyObject return a non-null 

value. 

Another kind of copying occurs during serialization/deserialization going to and from the 

clipboard.  Your GoObject classes must be Serializable.  See the discussion about serialization 

and persistence of GoDocuments, earlier in this chapter. 

Ownership 

Most GoObjects should either belong directly to a GoLayer as a top-level document object or to 

a GoGroup that belongs to a layer/document. In either case the Document property value is this 

document and the Layer property value is the layer within the document.  For child objects of 

groups, the Parent property value will be that GoGroup instead of null/nothing.  

Occasionally some objects will properly belong to a GoView instead of to a GoDocument, 

because they really represent part of the "view" of the document and not of the document 

itself. Predefined cases include selection handles (GoHandle) and the in-place text editor. The 

size and position of view objects are in document coordinates.  View objects have a Layer 

property value that is a layer in a view rather than a layer in a document. 

Event Handling 

When an object is changed, a GoChangedEventArgs with a GoLayer.ChangedObject hint is 

passed to all GoDocument.Changed event handlers.  As you define subclasses with additional 

properties or other state, you will need to remember to raise this event.  To do so it is easiest to 

call the GoObject.Changed method after the object's state changes, because it can take care of 

calling GoDocument.RaiseChanged for you.  You should call GoObject.Changed only if the 

property value or object state really has changed. 

A GoChangedEventArgs instance has a subhint value that is useful in identifying the kind of 

change that occurred for that subclass of GoObject.  For example, a call to set the 

GoObject.Visible property will result in a call to  

Changed(ChangedVisible, 0, old, NullRect, 0, value, NullRect) 

This call passes along the subhint (ChangedVisible), and the old and new values.  This additional 

information is important for optimizing update behavior and supporting undo and redo.  Note 

that for efficiency (to avoid unnecessary heap allocation from boxing) the old and new values 

can be passed along as integer, Object, or RectangleF values. 



The help file documentation for GoObject.Changed lists all of the predefined hint values for all 

of the Go object classes. 

In addition to raising the GoDocument.Changed event, if you want to support undo and redo, 

you will need to make sure your GoObject subclass also handles new properties correctly in the 

ChangeValue method.  For more about undo and redo, see Chapter 7.  

Whenever any object is added or removed from a document or a view, it raises a Changed event 

with a GoChangedEventArgs with the appropriate GoLayer.InsertedObject or 

GoLayer.RemovedObject event hint for the corresponding GoDocument or GoView. 

As you define your own subclasses, you can provide customized default behaviors for 

responding to various events. GoObject instances do not have their own individual events and 

event handlers because it is assumed that most of the objects of a certain class in a diagram 

want to behave the same way. This is unlike the situation where one expects to add controls to 

a form without subclassing and yet have radically different behaviors for each control.  For 

controls, the overhead of having individual event handlers for each object is acceptable; it is not 

acceptable for GoObjects, where you may well have thousands of objects in a window at once. 

The standard "event" handling methods are:  

• Paint -- render this object using a Graphics; if this method draws beyond the 

bounding rectangle, be sure to override ExpandPaintBounds correspondingly. 

• Pick – is this object (or perhaps a selectable parent) under a given point 

• OnLayerChanged -- the object has just been added to or is about to be removed 

from a layer in a document or view  

• OnParentChanged – the object has just been added to or is about to be removed 

from a group 

• OnBoundsChanged -- the object has changed size and/or position  

• OnSingleClick -- the user just clicked on this object  

• OnDoubleClick -- the user just double-clicked on this object  

• OnContextClick -- the user just right-mouse clicked on this object  

• OnHover [GoDiagram Win only] – the mouse has been resting at the same point 

over this object for a length of time determined by the GoView 

• OnMouseOver [GoDiagram Win only] -- the user just moved the mouse over this 

object without holding a mouse button down  



GoDiagram 49 Copyright © Northwoods Software 

• OnEnterLeave – the mouse has either just entered or just left this object, either 

during a mouse-over or while dragging the selection 

• OnSelectionDropReject – the user is dragging the view’s selection on this object—

return true to disallow the drop 

• OnSelectionDropped – the user has just dropped the view’s selection onto this 

object 

• GetToolTip -- return a string to display in a tool tip (defaults to nothing/null) 

• GetCursorName – return the name of a cursor to be shown for the mouse pointer 

• OnGotSelection -- this object just got added to some view's selection; typically this 

will call AddSelectionHandles on this object’s SelectionObject, which in turn will 

normally call CreateBoundingHandle or CreateResizeHandle. 

• OnLostSelection -- this object just got removed from some view's selection; typically 

this will call RemoveSelectionHandles on this object’s SelectionObject. 

• DoMove – the user is moving this object interactively; normally this will call 

ComputeMove. 

• DoResize -- the user is resizing this object interactively; normally this will call 

ComputeResize. 

• DoBeginEdit [Windows Forms only] – start the user editing this object interactively; 

typically this will call CreateEditor. 

• DoEndEdit  [Windows Forms only]– stop editing, if any object editor is in progress 

Many of these methods are called in response to user interactions with the GoView, and are 

related to events generated by the view.  For more information, see Chapter 5.  

Other Notifications of Object Changes 

When you want to do something when certain changes happen to objects, you can override the 

GoObject.Changed method to notice everything, or you can override the setting of certain 

properties.  If you don’t want to override a method or property, or if you can’t because you 

cannot define a subclass of an object, you can either add a GoDocument.Changed event handler 

(as discussed earlier), or you can add an observer to a particular object. 

A GoObject can easily notice changes to another object by declaring itself to be an observer of 

the other object.  You can do this by using the AddObserver and RemoveObserver methods.  

Note that an observer and the observed object must both be GoObjects—this lets them take 

part in copying and persistence very naturally. 



When an observed object’s GoObject.Changed method is called it first calls its Document’s (or 

View’s) RaiseChanged method for performing the standard updating.  Then it calls the 

GoObject.OnObservedChanged method of each observer, passing it the changed object and all 

the same argument values that the Changed method got. 

This mechanism is sometimes used to keep track of a particular property of a particular child 

object of a GoGroup by adding the parent to the child’s list of observers and by overriding the 

group’s OnObservedChanged method to look for the desired change subhint corresponding to 

that property and for that particular child object.  You should try to avoid using the observer 

mechanism to keep track of unrelated objects, or when the relationship between the objects 

might change (such as when an object might be removed from the group). 

GoObject-inheriting Classes 

Here is a class hierarchy diagram for the main GoObject-inheriting classes: 

 

The principal subclasses of GoObject include GoShape, GoText, GoImage, and GoGroup.  These 

are discussed in the following sections. 

GoShape 

Shapes include both closed and filled two-dimensional objects and open/unfilled (linear) objects 

such as GoStrokes.  Strokes are multi-segmented straight or curved lines.  Strokes can also have 

arrowheads. 

Most shapes, though, are things like diamonds, ellipses, polygons, rectangles, rounded 

rectangles, triangles, and pie slices.  Some classes, such as GoCube and GoCylinder, provide a 

simulated view of a 3D shape. 

 



GoDiagram 51 Copyright © Northwoods Software 

Here’s the class hierarchy starting with GoShape: 

 

Each GoShape has a Brush and a Pen to specify how to fill the inside of the shape and how to 

draw the outline of the shape.  Because GoStrokes are “open” shapes, the Brush specifies 

whether and how to fill in an arrowhead(s). 

You will typically set the GoShape.BrushColor, BrushStyle, and BrushForeColor properties to fill 

the shape with the brush that you want.  Similarly, you can set the GoShape.PenColor and 

PenWidth properties to control the most commonly set Pen properties. 

But you can also construct your own Pen and Brush values.  This is useful when you want a 

dotted pen, or a texture or gradient brush.  Be sure to finish setting them up the way you want 

before you set the GoShape.Pen or GoShape.Brush properties, because you may not change a 

Pen or Brush after you have assigned it as a property value. 

Pen p = new Pen(Color.DarkTurquoise, 5); 

p.DashStyle = DashStyle.Dash; 

s.Pen = p; 

Constructing gradient brushes can be somewhat more complicated.  For convenience GoShape 

defines several Fill… methods that provide common effects.  For example: 

roundrect.FillSimpleGradient(Color.Blue) 



 

roundrect.FillMiddleGradient(Color.Blue) 

 

roundrect.FillHalfGradient(Color.Blue) 

 

roundrect.FillShadedGradient(Color.Blue) 

 

 

roundrect.FillSingleEdge(Color.Blue) 

 

roundrect.FillDoubleEdge(Color.Blue) 

 

roundrect.FillShapeFringe(Color.Blue) 

 

roundrect.FillShapeGradient(Color.Blue) 

 

roundrect.FillShapeHighlight(Color.Blue) 



GoDiagram 53 Copyright © Northwoods Software 

 

These methods also have overloads that take the “other” color and, for the linear gradients, the 

direction of the gradient. 

roundrect.FillSimpleGradient(Color.Red, GoObject.MiddleLeft) 

 

roundrect.FillSimpleGradient(Color.White, Color.LightBlue, 

GoObject.TopLeft); 

roundrect.PenColor = Color.LightBlue; 

 
roundrect.FillSingleEdge(Color.Red, Color.Orange, 

GoObject.MiddleTop) 

roundrect.BrushMidFraction = 0.4f 

 

ellipse.FillShapeGradient(Color.DarkKhaki, Color.Khaki) 

 
triangle.FillShapeGradient(Color.Navy, Color.SkyBlue) 

 

A GoTextNode using a GoRoundedRectangle as its Background shape, could appear with a 

linear gradient as follows: 

textnode.Label.TextColor = Color.White; 

textnode.Shape.FillHalfGradient(Color.Black); 



 

Here’s an example showing a path gradient: 

textnode.Shape.FillShapeHighlight(Color.Blue, Color.White) 

textnode.Shape.BrushPoint = new PointF(0.2f, 0.2f) 

textnode.Shape.BrushFocusScales = new SizeF(0.9f, 0.85f); 

 

Please note that PathGradientBrushes only work well with simple convex shapes. 

Once you have created a gradient brush and assigned it to the GoShape.Brush property by 

calling one of the Fill… methods, you can get or set the colors that the brush uses, without 

having to reconstruct the brush explicitly. 

Brush and Pen Properties 

Setting the GoShape.BrushStyle property causes a new brush to be created and assigned as the 

value of GoShape.Brush.  The type of the brush, and some of it basic characteristics, are 

determined by the particular GoBrushStyle enum value. 

There are three color properties relevant to brushes on GoShape: BrushColor, BrushForeColor, 

and BrushMidColor.  Please note that setting these properties, particularly BrushForeColor and 

BrushMidColor, may have no effect until the shape has the appropriate brush style.  You can 

also set the BrushMidFraction property to control the fractional distance at which the middle 

gradient color is drawn, for those GoBrushStyles that display three colors. 

For linear gradients, the BrushPoint property lets you set the end point for the gradient; the 

BrushStartPoint property specifies the starting point.  These PointF values take fractional single 

floating point numbers, typically between 0 and 1.  These fractions are scaled up by the width 

and by the height of the shape to determine the actual point within the shape.  You can also use 

values a little bit less than zero or a little bit larger than 1 to specify points just outside of the 

shape’s bounding rectangle. 

For path gradients, the BrushPoint property specifies the center point of the focus area.  It too 

uses normalized fractional values based on the size of the shape.  But path gradients also allow 

you to control the size of the focus area that is displaying the BrushColor -- use the 



GoDiagram 55 Copyright © Northwoods Software 

BrushFocusScales property.  It is of type SizeF, and its values are also fractional values of the 

width and height of the shape. 

You can also set or get the GoShape.PenColor and PenWidth properties, as alternate and more 

convenient ways of customizing the Pen.  Setting the PenColor to Color.Empty will just set the 

Pen to null – no shape outline is drawn.  Note also that a pen width of zero has the convention 

in GDI+ of drawing as a single-pixel-wide pen, regardless of the GoView.DocScale. 

Since many of the node classes offer a Shape property for accessing its shape object as a 

GoShape, you can use this property to easily customize the appearance of nodes.  For example: 

 

      GoTextNode n = new GoTextNode(); 

      n.Text = "a GoTextNode"; 

      n.Label.Bold = true; 

      n.Label.FontSize = 14; 

      n.Shape.BrushColor = Color.Tomato; 

      n.Shape.BrushForeColor = Color.Bisque; 

      n.Shape.BrushStyle = GoBrushStyle.HatchHorizontalBrick; 

      n.TopLeftMargin = new SizeF(15, 10); 

      n.BottomRightMargin = new SizeF(15, 10); 

      doc.Add(n); 

 
      GoBasicNode n = new GoBasicNode(); 

      n.Text = "a GoBasicNode"; 

      n.LabelSpot = GoObject.Middle; 

      n.MiddleLabelMargin = new SizeF(20, 30); 

      n.Shape.FillShapeFringe(Color.Violet); 

      doc.Add(n); 

 

Dynamic Brushes 

GoShape will automatically rescale its gradient brush to fit the size of the shape.  However, 

there can be situations where you really need to generate a brush dynamically.  For example, 

when you want a fringe of a constant width regardless of the size or aspect ratio of the shape, 

you will need to produce a new brush each time the shape changes size. 



The PathGradientRoundedRectangle example class in the DrawDemo sample demonstrates this 

technique.  It overrides the GoShape.Brush property getter to return a newly created 

PathGradientBrush each time.  To optimize the work, the resulting brush is cached in a field 

which is cleared whenever the Bounds property is changed, including during an undo/redo 

operation in ChangeValue. 

A PathGradientRoundedRectangle, with a White BrushColor and a Gray BrushForeColor: 

 

Although most shapes will be instances of GoRectangle or GoEllipse, you may find it convenient 

to use the GoDrawing class to get some of the common shapes without painstakingly initializing 

a GoPolygon. 

GoDrawing and Predefined Figures 

The most general GoShape class is GoDrawing.  This shape class is like GoPolygon in supporting 

an arbitrary number of segments, but allows one to mix straight and Bezier curve segments, and 

can have any number of separate open or closed figures. 

For example, to create a “Rounded I-Beam” shape that looks somewhat like a capital “I” with 

concave curves: 

    GoDrawing s = new GoDrawing(); 

    s.StartAt(0, 0); 

    s.LineTo(100, 0); 

    s.CurveTo(50, 25, 50, 75, 100, 100); 

    s.LineTo(0, 100); 

    s.CurveTo(50, 75, 50, 25, 0, 0); 

As another example, to create a heart shape: 

    GoDrawing s = new GoDrawing(); 

    s.StartAt(50, 25); 

    s.CurveTo(50, 0, 100, 0, 100, 30);    // Top right 

    s.CurveTo(100, 50, 50, 90, 50, 100);  // Bottom right 

    s.CurveTo(50, 90, 0, 50, 0, 30);      // Bottom left 

    s.CurveTo(0, 0, 50, 0, 50, 25);       // Top left 

GoDrawing also supports rotation.  You can either set the Angle property, or you can call Rotate 

to incrementally change the angle about an arbitrary point. 

You can also flip the drawing about either the vertical or the horizontal axis. 



GoDiagram 57 Copyright © Northwoods Software 

Predefined GoDrawing shapes are defined by the GoFigure enumeration.  For example: 

GoDrawing s = new GoDrawing(GoFigure.Cloud); 

s.Bounds = new RectangleF(10, 10, 120, 80); 

s.BrushColor = Color.WhiteSmoke; 

produces something that might look like: 

 

Caution: the exact appearance of these predefined drawings may change in future versions. 

A number of the node classes also define constructors that take a GoFigure parameter and offer 

a Figure property for convenience in setting the GoDrawing.Figure if the shape is an instance of 

GoDrawing.  

Caution: setting the Figure property of a node class if the node’s shape is not an instance of 

GoDrawing will have no effect.  Since the default kind of object for most of the node classes is 

not a GoDrawing, due to efficiency considerations, you have to make sure the shape is an 

instance of GoDrawing before setting the Figure property. 

Here’s a listing of all of the GoFigures that are currently defined.  Again, this list may change in 

the future, as may the appearance of the individual figures. 



 



GoDiagram 59 Copyright © Northwoods Software 

 



GoText 

Text strings are displayed by the GoText class.  There are many properties that help determine 

the appearance and behavior of a GoText object: 

• Text – the string to be displayed 

• FamilyName – the string name of the font family to be used, such as "Microsoft 
Sans Serif" 

• FontSize – the point size specifying the height and width of the characters, such as 10 

• Alignment – how each line of text is aligned within the whole text object, such as 

GoObject.Middle for centered text; this also determines the Location for the object 

• TextColor – the color for the characters, such as Color.Black 

• BackgroundColor – the color for the background behind the text, such as Color.White 

• TransparentBackground – if true, the background color is not painted; otherwise the 

whole text object is filled with the background color 

• Bold – whether the text is in a bold style 

• Italic – whether the text is in an italicized style 

• Underline – whether the text is underlined 

• StrikeThrough – whether the text appears “crossed out” 

• Bordered – whether the text has a rectangle drawn around it, in the TextColor 

• Multiline – whether embedded carriage-return/newline character sequences force a 

line break in the display of the text string 

• AutoResizes – whether the size of the text object is automatically adjusted as the text 

string is changed 

• StringTrimming – how the text is abbreviated when AutoResizes is false 

• Clipping – whether the text drawing is clipped to the bounds of the text object 

• BackgroundOpaqueWhenSelected – whether selecting a text object causes the 

background to be displayed (TransparentBackground set to false) instead of getting 

selection handle(s) as most objects normally do. 

• Wrapping – whether to automatically insert line breaks even when there is no newline 

character embedded in the string 



GoDiagram 61 Copyright © Northwoods Software 

• WrappingWidth – when Wrapping is true, specifies the width at which text will be 

wrapped to the next line, in document coordinates 

• EditableWhenSelected – when true, permits editing of the text only when it is part of an 

object that was selected before it was clicked 

• EditorStyle [Windows Forms only] – this controls the kind of Control used to implement 

the in-place text editor 

When a GoText object is constructed, the FamilyName and FontSize properties default to the 

values of the shared/static variables GoText.DefaultFontFamilyName and 

GoText.DefaultFontSize.  By default, text objects are not Resizable and have a 

TransparentBackground.  They support only single lines of text and do not wrap or clip. 

The AutoResizes property, which defaults to true, causes the text string to be remeasured each 

time the string value is changed and the GoText’s Bounds property to be updated accordingly.  

The Location (as determined by the Alignment) will stay the same, but the width and height will 

match the dimensions of that text string, in the given font and style.  If you set AutoResizes to 

false or if you explicitly change the Size of the text object, you run the risk of painting beyond 

the bounds of the text object, which will result in improper updates of the view.  In this case it is 

wise to set the Clipping property to be true, to make sure that the text is not drawn beyond the 

bounds of the object.  The Clipping property defaults to false for performance reasons. 

The GoText.BackgroundOpaqueWhenSelected property determines how a selected text object 

appears by controlling the transparency of the text’s background instead of adding selection 

handles. 

 

A GoText object whose Shadowed property is true will produce a rectangular shadow if 

TransparentBackground is false and will produce an exact shadow of the text characters if 

TransparentBackground is true. 

 



For improved performance the Paint method calls the PaintGreek method to allow it to decide 

on simpler renditions of the text at small scales.  The standard implementation uses the 

GoView.PaintNothingScale and GoView.PaintGreekScale to decide if the text should be painted 

at all or if it should just be drawn as a single line. 

With Windows Forms users can edit text in-place.  If the Editable property is true, then a single 

click on the text object will invoke DoBeginEdit to create and display a TextBox control.  The 

Multiline property determines the behavior of the Enter key.  When Multiline is true, the 

TextBox accepts the Enter key as inserting a carriage-return/newline; when false, the Enter key 

calls DoEndEdit to finish editing, resulting in a modified GoText.Text string value.  In either case 

the Escape key calls DoEndEdit without changing the string value. 

For text objects that represent integers, you can set the EditorStyle property to 

GoTextEditorStyle.NumericUpDown.  In this case GoText.CreateEditor will bring up a 

NumericUpDown control, limited to a range of integers specified by GoText.Minimum and 

GoText.Maximum.  If you set the EditorStyle property to GoTextEditorStyle.ComboBox and you 

can set the GoText.Choices property to a list of items that will be presented in the drop-down 

list of a ComboBox control.  The GoText.DropDownList property specifies whether the user is 

allowed to type arbitrary text in the ComboBox. 

     

GoImage 

Various kinds of images, such as bitmaps, WMF files, GIF files, JPEG files, and icons are displayed 

using the GoImage class.  The images can be kept as files or can be stored in resources, either 

separately or as part of ImageLists.  Note that ImageList is only available when using Windows 

Forms. 

Properties: 

• Image – the underlying Image object 

• ResourceManager – the ResourceManager in which to look up Image values by 

name 



GoDiagram 63 Copyright © Northwoods Software 

• Name – either the name of the image resource in the ResourceManager or the 

filename on disk 

• NameIsUri – the name is not a pathname for a disk file, but is a URI that a 

WebClient can use to find an image 

• ImageList – the ImageList containing Images indexed by integer [Windows Forms 

only] 

• Index – if non-negative, the integer index of the desired Image in the ImageList 

[Windows Forms only] 

• Alignment – where the actual image is drawn within the whole GoImage object; this 

also determines the Location for the object 

• AutoResizes – whether the size of the GoImage object is automatically adjusted as 

the Image is changed 

The GoImage constructor creates an image object that is not Reshapable by default, thereby 

maintaining its aspect ratio when resized by the user 

 The initial value of the ResourceManager property is the value of 

GoImage.DefaultResourceManager, which itself is initially nothing/null. 

The shadow of a GoImage is drawn in the same shape as the non-transparent parts of the 

Image. 

 

GoImage keeps a static/shared hashtable of cached images.  This helps reduce memory 

consumption, for example when creating multiple nodes that all display the same image.  You 

can clear this cache by calling GoImage.ClearCachedImages.  However, no existing GoImages 

will change appearance until you call GoImage.UnloadImage, which will cause LoadImage to 

reload a new image from a ResourceManager/ImageList/disk file when the GoImage is painted 

in a GoView. 

You should override GoImage.LoadImage if you have alternate means of getting an Image in 

memory and you depend on serialization.  Setting the Image property works, but the Image is 

not serialized.  When a GoImage is serialized and deserialized, it depends on the LoadImage 

method to reproduce the Image.  If LoadImage fails, no image will show in the view.  You can 

interpret the Name and Index properties however you wish, and of course you can add 

whatever serialized fields you need to ensure your override of LoadImage works. 



GoGroup 

GoGroup implements the concept of a "group" of objects that can be manipulated together.  

These objects will not also be contained directly by any layer or by other groups; GoGroup and 

GoLayer will enforce this policy. 

GoGroup is a subclass of GoObject, which means that groups can contain other groups. This is 

the Composite pattern. Using this mechanism, an object hierarchy can be created. 

GoGroup also implements the IGoCollection and IList interfaces using an ArrayList.  Unlike 

GoLayer and GoDocument, the objects in a group maintain a particular order.  Use the 

InsertAfter and InsertBefore methods to add an object into a group at a particular position 

relative to other children in the group.  Add always inserts the object at the end of the list, so 

that it always appears in front of other children. 

You can use the GoGroup.AddCollection method for adding a collection of objects to be 

immediate children of a group.  This method can even move objects from within other 

GoGroups or top-level objects, without disconnecting any links as would normally happen if 

objects are first Removed and then Added. 

The coordinates for objects within a group are kept in document coordinates; they are not 

relative to the position of the group. 

A group does not really have its own independent bounding rectangle. Instead the bounding 

rectangle is really the bounding rectangle for all of the children. In fact the Bounds property is 

not meaningful when there are no objects in a group. 

Most of the GoGroup methods just iterate over the child objects, performing the appropriate 

operation.  Paint, for example, just calls Paint on each visible child. 

When you add an object to a group, you will normally make that child object not Selectable.   

When a child object is not Selectable, the selection mechanism will handle a user mouse click on 

the child object by trying to select its parent group.  If that group is Selectable, it is selected; 

otherwise the selection mechanism continues trying up the chain of parent groups. 

When a child object is Selectable, it can be selected as if it were an independent object.  Both it 

and its parent group and any sibling objects can belong to the selection simultaneously.  When 

the user then drags such selected children, the behavior depends on the object’s DragsNode 

property.  If true, dragging the child will drag the parent IGoNode instead (not just the parent 

GoGroup, in case the groups are deeply nested).  If DragsNode is false, the user can drag the 

object around and any effects on the parent group are determined by how that group’s 

GoGroup.LayoutChildren method behaves. 



GoDiagram 65 Copyright © Northwoods Software 

If a GoGroup object is removed from a layer, all of its children are also removed.  However, 

setting one of the properties such as Visible or Deletable does not cause the same properties to 

be set on any of the children.  Nevertheless a child object whose Visible property is true will not 

be viewable by the user if its parent group’s Visible property is false. 

It is fairly common to want to refer to a particular child object for various reasons, such as 

wanting to change its appearance or when laying out the position of certain objects relative to 

each other.  The most efficient way to get and retain such references is to define a subclass and 

add a field that refers to the child object.  Nearly all of the predefined node classes and most of 

the example classes do this. 

However, you might not want to bother defining a subclass of a group or node, particularly 

when there is no method that you need to override.  Another way of keeping track of particular 

child objects is to associate a name with them, by calling the GoGroup.AddChildName method.  

You can recover the child reference by calling FindChild or (in C#) using a String indexer.  Many 

of the children of the predefined node classes already have such names—the names are the 

same as the names of the properties that return the child. 

Basically just after you construct, initialize, and add a new child object to a group, you can call 

AddChildName so that FindChild will return that child. 

Bounds Management 

Setting the Bounds property changes any object’s position and size.  Such a change will also 

invoke the OnBoundsChanged method and all document Changed event handlers with a 

GoChangedEventArgs holding a ChangedBounds subhint.  Remember that these methods get 

called after the bounding rectangle has been changed. 

The default behavior implemented by the OnBoundsChanged override for GoGroup calls 

RescaleChildren to move all the children and resize them by the same horizontal and vertical 

scales that the whole group is being resized.  It then calls LayoutChildren, which by default does 

nothing, since it has no object specific knowledge about how to reposition the children in the 

desired manner. 

For groups that include text strings the built-in resize may not appropriate, since the user 

probably does not want to change the size of the text.  In such cases it is better to either turn off 

the AutoRescales property on the (text) object or to manage the layout of the group’s children 

explicitly.  It is fairly common to set AutoRescales to false for certain group children, especially 

text.  But it is also common to override LayoutChildren in order to re-position and perhaps re-

size the group’s children to maintain a certain appearance. 



When neither the width nor the height of the whole group has been changed, it is convenient to 

use the MoveChildren method for moving all of the group’s children.  In fact, 

GoGroup.OnBoundsChanged only calls MoveChildren when the new group size is the same as 

the original size. 

When a group’s child is changed by setting its Bounds property, the parent group is notified by a 

call to OnChildBoundsChanged.  This allows the group the opportunity to adjust its notion of its 

position and size, and to re-layout the children if desired.  By default 

GoGroup.OnChildBoundsChanged just calls LayoutChildren.  Your individual group classes may 

wish to adjust the size and/or position of some of the other group children.  But remember that 

the change was instigated by a change to a child, and not to the group as a whole.  Be careful to 

avoid infinite adjustment loops or differing behaviors depending on the order of changes. 

The argument to LayoutChildren will indicate which child, if any, had changed bounds; the 

argument will be nothing/null when called due to the whole group’s bounds having changed. 

You need to consider whether users trying to move or copy a child object should instead move 

or copy the parent.  Because most children are not Selectable this is not an issue.  But if they are 

selectable, your override of GoGroup.LayoutChildren will automatically reposition each of the 

children in the right place when the group is resized, which will keep the child in place!  If you 

want to allow children to be selected and able to be moved on their own, you should make sure 

that the LayoutChildren method does not control their positioning. 

On the other hand, if you want the children of a group to be individually selectable but you do 

not want the user to move them independently, you should set the GoObject.DragsNode 

property to true for each of these children.  This will let a user’s drag of a selected child drag the 

whole group. 

If the object’s shape isn’t like the bounding rectangle, you may need to override ContainsPoint 

to improve picking, and override GetNearestIntersectionPoint to improve calculating link points 

for ports. 

Kinds of Groups 

Go provides many different kinds of predefined groups.  Most are nodes, because they have 

ports and can be linked together -- see Chapter 6.  Here’s the class hierarchy starting with 

GoGroup: 



GoDiagram 67 Copyright © Northwoods Software 

 

GoPort 

GoPort acts as a connection point for GoLink objects. Each port has a collection of GoLinks that 

are attached to the port. 

As with any class implementing IGoPort, each GoPort has two properties, an integer (UserFlags) 

and an object (UserObject), for your use.  These properties can sometimes be handy to 

associate your application data with a port without having to define a new class inheriting from 

GoPort. 

Appearance 

By default a GoPort appears as an ellipse, but it can use any GoObject to control its appearance.  

GoPortStyle enumerates the predefined styles: 

• None – draw nothing, but allow participation in linking 

• Object – another object (a “Port Object”) provides the representation using the 

port’s bounds 

• Ellipse – draw an ellipse (or circle) 

• Triangle – draw a triangle “pointing” according to the value of the port’s ToSpot 

property, as if the link were an arrow coming into the port 

• Rectangle – draw a rectangle (or square) 



• Diamond – draw a four-sided polygon with the vertices at the midpoints of the 

bounding rectangle’s edges 

• Plus – draw a “+” 

• Times – draw an “x” 

• PlusTimes – draw both a “+” and an “x” at the same spot 

GoPort is a subclass of GoShape, so you can easily control the appearance of the non-None, 

non-Object ports by setting the Pen… and/or Brush… properties. 

The following image shows two nodes, each with two ports.  One port is diamond shaped, with a 

cornflower-blue brush.  Another port is triangular, with no brush.  Finally, two ports are ellipses, 

with a light green brush and no pen. 

 

Ports can also share many Port Objects.  Your application can, for example, pre-allocate several 

different GoImage instances corresponding to the kinds of states you want to display to the 

user.  As each port changes state, you just need to set the PortObject property with the 

appropriate image.  Because potentially many ports will share these Port Objects, they must not 

be part of any document or group or view.  Before each Port Object is painted, its bounding 

rectangle will be set to the bounding rectangle of the port. 

Linking Ports 

For your application, some ports may be valid sources for links, some may be valid destinations, 

and some may be both or neither. It may be that some particular pairs of ports cannot have a 

valid new link between them. For example, you may want to avoid having two different links 

connecting the same two ports, or you may want to limit the number of links on a port to a 

certain number.  The principal method that is called is GoPort.IsValidLink.  It is responsible for 

deciding if it is OK for a user to draw a new link or reconnect an existing link to go between two 

particular ports. 

The linking tool, GoToolLinking, uses the CanLinkFrom, CanLinkTo and IsValidLink methods to 

allow the particular port classes the ability to control whether the user can draw a link starting 

at a given port and ending at one. 



GoDiagram 69 Copyright © Northwoods Software 

GoPort also provides several properties that affect the behavior of those predicates: 

• IsValidFrom 

• IsValidTo 

• IsValidDuplicateLinks 

• IsValidSelfNode 

• IsValidSingleLink 

You can set the IsValidFrom and/or IsValidTo properties to false to cause the CanLinkFrom and 

CanLinkTo methods to return false.  Other settable GoPort properties include IsValidSelfNode 

and IsValidDuplicateLinks, both used by IsValidLink to determine link validity.  Normally a link is 

not allowed from a port to a port in the same node.  Only when IsValidSelfNode is true for both 

ports may IsValidLink return true.  Similarly, when a link already exists, a second link is not 

allowed from the same FromPort to the same ToPort.  Only when IsValidDuplicateLinks is true 

for both ports may IsValidLink return true.  Finally IsValidSingleLink permits the user to connect 

at most one link to a port. 

GoPort.IsValidLink also looks at the port’s GoDocument.ValidCycle property to decide if it 

needs to see if a cycle might result from connecting the proposed two ports. 

You can also override the CanLinkFrom and/or CanLinkTo methods, as with the LimitedPort 

example port class.  The following code imposes an optional maximum number of links for a 

port, based on a MaxLinks property that specifies a limit. 

 

VB.NET: 

Public Overrides Function CanLinkFrom() As Boolean 

    Return MyBase.CanLinkFrom() AndAlso Me.LinksCount < Me.MaxLinks 

  End Function 

  Public Overrides Function CanLinkTo() As Boolean 

    Return MyBase.CanLinkTo() AndAlso Me.LinksCount < Me.MaxLinks 

  End Function 

 

C#: 

public override bool CanLinkFrom() { 

    return base.CanLinkFrom() && 

           this.LinksCount < this.MaxLinks; 

  } 

  public override bool CanLinkTo() { 

    return base.CanLinkTo() && 



           this.LinksCount < this.MaxLinks; 

  } 

Because ports have a size, the exact point at which a link should terminate may want to depend 

on the dimensions of the port.  Furthermore it is common for there to be different points 

depending on whether the link is coming in or going out of the port or where the port is located 

relative to the rest of the node.  This notion is supported by the FromSpot and ToSpot 

properties, which remember the object spots that links connected to this port should end at. 

The GetLinkPoint method is responsible for calculating this point; the default behavior depends 

on the FromSpot and ToSpot values. 

Override the GetLinkPoint method to produce more sophisticated link appearances. Usually if 

the link direction for the port is on one side, the link point will be on the same side to avoid 

overlapping the link with the visual appearance of the port.  Note that the link point need not be 

in the bounding rectangle of the port, although if it is too far away it might be confusing or 

disconcerting for the user. 

If you expect the link point to vary dynamically, you may wish to specify NoSpot as the value for 

one or both of the FromSpot and ToSpot properties.  In this case the GetLinkPointFromPoint 

method is called.  By default this calls GetNearestIntersectionPoint.  The argument specifies 

approximately where the link is coming from or going to.  As a further convenience, 

GetNearestIntersectionPoint, when the port style is not Style.Object, uses the edge point of the 

Port Object that intersects the straight line from a point in the link’s stroke to the center of the 

port.  For example, BasicNode sets its port’s PortObject to be its ellipse, which has the effect of 

ending links not at the port but at the outer edge of the ellipse. 

Links that are connected to a port may be constrained to come into the port or come out of the 

port from certain directions.  GetLinkDir is responsible for determining the direction.  The 

standard directions correspond to the spot locations.  If the spot is Middle or NoSpot you may 

want to override this method to return the desired direction. 

Navigating Links 

Each port has a collection of links that are attached to the port.  The links do not belong to the 

port–normally the links are top-level objects in a document.  From a port you can iterate over all 

the links to get to all the ports connected by those links.  For example, here is the code in the 

Family Tree example where the document is positioning all the “children” PersonNodes for a 

particular mother/father pair.  All of the children are linked to the mother/father marriage at a 

“marriage port”, here held in a variable named mp. 

 

 



GoDiagram 71 Copyright © Northwoods Software 

VB.NET: 

 

' now look at each child 

  Dim childrect As RectangleF = mp.Bounds 

  Dim childlink As IGoLink 

  For Each childlink In mp.Links 

    Dim childp As IGoPort = childlink.GetOtherPort(mp) 

    Dim childnode As PersonNode 

    childnode = CType(childp.GoObject.Parent, PersonNode) 

    LayoutTree(childnode, childrect) 

  Next 

 

C#: 

  // now look at each child 

  foreach (IGoLink childlink in mp.Links) { 

    IGoPort childp = childlink.GetOtherPort(mp); 

    PersonNode childnode = (PersonNode)childp.GoObject.Parent; 

    LayoutTree(childnode, ref childrect); 

  } 

This code iterates over the links at the mp port.  It gets the port at the other end of the link.  

Then it gets the PersonNode for that other port by getting the port’s parent group and assuming 

it is of the correct class.  Finally it calls a method with that node representing the child. 

If you only wish to look at links on a port going in a single direction, GoPort.SourceLinks returns 

an enumerable for iterating over only links coming in to the port.  GoPort.DestinationLinks 

returns a similar enumerable for iterating over links leaving the port. 

GoLink 

GoLink is a GoStroke that connects two different GoPorts.  Normally you create a link by 

allocating a new GoLink, setting both the “from” and “to” ports, and adding it to a document’s 

LinksLayer.  Delete a link by calling the Unlink method, which removes the object from the 

document as well as disconnecting the link from the ports. 

As with any class implementing IGoLink, each GoLink has two properties, an integer (UserFlags) 

and an object (UserObject), for your use.  These properties can sometimes be handy to 

associate some application-specific data with a link without having to define a new class 

inheriting from GoLink. 



Link Path 

The default link stroke will consist of three segments (four points in the stroke). The end 

segments, at the ports, will be relatively short. The middle segment will be just a straight line 

connecting the two short segments at the ports. There is no short end segment if the 

corresponding port does not have a link port spot (i.e., the value is NoSpot).  For the short end 

segments, GoPort.GetFromLinkPoint and GoPort.GetToLinkPoint give the end points, 

GoPort.GetFromLinkDir and GoPort.GetToLinkDir give the directions, and 

GoPort.GetEndSegmentLength gives the lengths. 

 

If both ports have link port spots that are NoSpot, then the default link stroke consists of only a 

single segment (two points in the stroke). 

 

If the link Style is GoStrokeStyle.Bezier, however, there will be four points in the stroke instead 

of two, and the curviness is determined by GoLink.Curviness.  A positive value for this property 

will result in a clockwise curve; a negative value will result in a counter-clockwise curve. 

 

If you set the Orthogonal property to true, the default link stroke will have five segments 

instead of three, and all segments will be either horizontal or vertical.  When Orthogonal is true, 

setting the GoStroke.Style property to GoStrokeStyle.RoundedLine will round off the corners of 

the link.  This also helps indicate which direction a particular link is going when several links have 

co-linear segments. 



GoDiagram 73 Copyright © Northwoods Software 

 

An additional option, when Orthogonal is true, is to set the Style to 

GoStrokeStyle.RoundedLineWithJumpOvers.  This screen shot was taken from the Processor 

sample application: 

 

If the position of one or both of its GoPorts changes, the GoLink redraws itself to connect the 

new positions. When either port changes it calls the OnPortChanged method, which by default 

just calls CalculateStroke.  This method is responsible for making sure the stroke goes in the 

desired manner by having all the right points.  Override the CalculateStroke method to define 

your own manner of determining the points used by the link’s stroke.  For orthogonal links it 

may be sufficient to override GetOrthoPoints, which is called just for adding the two additional 

midpoints of the default orthogonal link stroke. 

When the link’s from and to ports are the same port, the default CalculateStroke method 

produces a little “loop” connecting the port with itself. 



 

You can control the size of the loop by setting the Curviness property; a negative value plots the 

link on top of the node instead of on the bottom. 

Controlling the Link Path 

As mentioned above, the points of a GoLink’s stroke are determined by the CalculateStroke 

method.  GoLink provides many different standard paths based on various properties such as 

GoLink.Orthogonal and properties of the ports that the link is connected to, such as 

GoPort.FromSpot and GoPort.ToSpot. 

You can of course programmatically modify the points of the stroke.  The user may also be able 

to, if it is Resizable and Reshapable.  However, such modifications will be lost as soon as 

CalculateStroke is called again, perhaps due to the repositioning of one of the ports.  You can 

control the overall behavior of CalculateStroke to take any existing points into account by 

setting the AdjustingStyle property.  This affects the AdjustPoints method, called by 

CalculateStroke, to provide a customized path based on the current points in the stroke. 

The GoLinkAdjustingStyle enum currently has four defined values: 

• Calculate, clear the existing points and specify the standard behavior: 

o When both ports have link spots that are GoObject.NoSpot, draw a Bezier 

curve if the stroke style is GoStrokeStyle.Bezier, or else draw a straight line. 

o When only one port has a link spot, draw a two-segment stroke with 

straight lines. 

o When both ports have link spots, draw either a three-segment stroke with 

straight lines or a Bezier curve 

o If GoLink.Orthogonal or GoLink.IsSelfLoop is true, draw a five-segment 

stroke with straight/rounded/jump-over lines (depending on the Style) or a 

Bezier curve 

• Scale, when there are more than the standard number of points in the stroke, scale 

and rotate the intermediate points so that the link’s shape stays approximately the 

same.  AdjustPoints will call the RescalePoints method. 



GoDiagram 75 Copyright © Northwoods Software 

• Stretch, when there are more than the standard number of points in the stroke, 

linearly interpolate the intermediate points along the X and Y dimensions between 

the ports.  AdjustPoints will call the StretchPoints method. 

• End, when there are more than the standard number of points in the stroke, or if 

the stroke is orthogonal, just modify the end points, while leaving any intermediate 

points unchanged.  AdjustPoints will call the ModifyEndPoints method. 

Another automatic way of of specifying a stroke path for Orthogonal links is to set 

GoLink.AvoidsNodes to true.  This actually modifies the behavior of AddOrthoPoints to 

calculate and follow the shortest path between the end points that does not cross over any 

areas specified as “occupied” by GoDocument.IsAvoidable and 

GoDocument.GetAvoidableRectangle. 

In order for such path searches to work, the link must first be part of a GoDocument so that it 

can know which nodes to consider avoiding.  Thus if you create and connect a link before adding 

it to a document layer, you will need to explicitly call GoLink.CalculateStroke after adding the 

link to the document. 

Appearance and Behavior 

Many attributes of links can easily be customized through the properties and methods of 

GoStroke and GoShape, such as: 

• line color, thickness, and style (GoShape.Pen and GoStroke.Style) 

• arrowheads (GoStroke arrowhead properties and GoShape.Brush) 

• number, location, and size of line segments (GoStroke points and CalculateStroke) 

• number, style, and behavior of resize handles (pick points and DoResize) 

• highlighting (GoStroke.Highlight and GoStroke.HighlightPen) 

The following image shows two nodes connected by a link.  The link is Orthogonal, with a 

GoStrokeStyle.RoundedLine style.  It has a fuchsia colored dash-dotted pen of width 3, and it 

has a turquoise highlight pen of width 6.  The link has an arrow at the “To” end, and the arrow 

shaft length is equal to the arrow length to give it a triangular shape.  The arrowhead is filled 

with a forest-green brush.  Finally, the link is shadowed. 

 



You can customize the appearance of arrowheads by setting arrowhead properties such as 

ToArrowLength, ToArrowShaftLength, ToArrowWidth, ToArrowFilled, FromArrowLength, 

FromArrowShaftLength, FromArrowWidth and FromArrowFilled.  Additional customization is 

possible by overriding GoStroke methods and properties. 

 

A link’s selection handles, like a stroke’s, are positioned at the points along the stroke, not along 

the bounding rectangle.  A selected link will not have selection handles at the very end points, 

unless there are only one or two segments in the stroke. 

 



GoDiagram 77 Copyright © Northwoods Software 

If the link is Relinkable, the end selection handles will be diamonds instead of rectangles.  

Relinking by the user dragging an end selection handle causes the existing link to be 

disconnected from one port.  When the link gesture is completed the port is set again. 

Dragging filled rectangular selection handles just moves the stroke point, thus rerouting the link.  

If the link is orthogonal, the resizing moves that middle segment to maintain orthogonality.  

When the link is not Reshapable, the rectangular selection handles are hollow, indicating that 

the user cannot move them. 

Movable Links 

Normally the ports that a link connects determine the link’s position and shape.  When one or 

both ports move, the link moves too.  Users should be able to move nodes around, but not links, 

since that would make the links appear disconnected from their ports.  Thus by default 

GoObject.Movable is false for all GoLinks. 

However, it is possible to implement GoDiagram applications where the user can drag links 

around, leave them partly connected or completely disconnected, reconnect them by 

superpositioning a link end with a port by moving either the link or the node, and have nodes 

automatically drag around their partly connected links.  This is demonstrated in the 

MovableLinkApp sample application by providing a custom dragging tool and by setting 

GoLink.Movable to true.  The override of GoToolDragging.DoDragging is necessary when the 

user completes the drag in order to actually set the GoLink.FromPort and GoLink.ToPort, either 

to new port values for a new connection or to nothing/null for a disconnection. 

Labeled Links 

The GoLabeledLink class supports up to three additional objects located near either end and 

near the middle of the link.  The GoLabeledLink class has three properties: FromLabel, 

MidLabel, and ToLabel, which can be nothing/null or any GoObject. 

The class GoLabeledLink does not inherit from GoLink but from GoGroup instead.  The group 

has up to four children: a GoLink and the three labels.  GoLabeledLink gets its link-ness by 

implementing IGoLink.  Most of the link properties and methods are delegated to the child 

GoLink, which is held as the RealLink property.  So you can change the appearance of a labeled 

link with code such as: 

 

    GoLabeledLink l = ...; 

    Pen p = new Pen(Color.FromArgb(123, 234, 56), 4); 

    p.DashStyle = DashStyle.DashDot; 

    l.RealLink.Pen = p; 



(Remember that you must not modify a Pen or a Brush after you have assigned it to any 

GoObject or GoDocument property.) 

OnPortChanged method calls both invoke the child GoLink’s OnPortChanged method and 

LayoutChildren as well, the latter to maintain the proper positions for the labels. 

LayoutChildren just calls the methods PositionEndLabel and PositionMidLabel, which try to be 

smart about placing the labels where they do not overlap the link stroke too much, but you can 

override these methods to implement your own positioning policies.  For the relatively common 

case where you want the object to be centered on the link rather than off to one side, you can 

just set the FromLabelCentered, MidLabelCentered, or ToLabelCentered properties. 

The following image displays two labeled links, each with three labels.  The Orthogonal link has 

the labels at their default positions; the link with the labels ending in “4” have the labels 

centered along the link’s stroke. 

 

The labels can be any object but are usually instances of GoText.  One possible use of centered 

non-text labels is to hold ports, to allow links to come off of links. 

If you would like to customize the appearance or behavior of the RealLink part of a 

GoLabeledLink by deriving a new class inheriting from GoLink, you can get a GoLabeledLink to 

use your custom GoLink class by either overriding GoLabeledLink.CreateRealLink or just by 

setting GoLabeledLink.RealLink to a new instance of your link class. 

 

  [Serializable] 

  public class FancyLink : GoLink { 

    public FancyLink () { 

      . . . various initializations of GoLink . . . 

    } 

    . . . various overrides, perhaps . . . 

  } 

  [Serializable] 

  public class MyLabeledLink : GoLabeledLink { 

    public MyLabeledLink () { 

      . . . various initializations of GoLabeledLink . . . 

    } 

 



GoDiagram 79 Copyright © Northwoods Software 

    public override GoLink CreateRealLink() { 

      return new FancyLink(); 

    } 

  } 

GoLink has a GoLink.AbstractLink property that will return the GoLabeledLink if the GoLink is 

part of a GoLabeledLink; otherwise it will just return itself. 



5. VIEWS AND TOOLS 

GoView is a Control that supports the display and editing of diagrams containing graphical 

objects such as nodes and links.  

GoView supports the model-view-controller architecture. GoDocument is the model for 

GoView.  

GoView supports many basic features:  

• displaying a GoDocument and its GoLayers of GoObjects  

• displaying its own view-specific layers of objects, such as selection handles 

• painting a background and optionally drawing a grid 

• borders 

• optional Controls along all four sides and at all four corners 

• scrolling [in Windows Forms, scroll bars and autoscrolling 

• panning, when the user clicks on the mouse wheel [automatic in Windows Forms] 

• scaling (zooming)  

• printing  

• generating a bitmap for part or all of the document 

• selection  

• clipboard transfer: cut, copy, and paste 

• drag-and-drop, both within a window as well as between windows [latter is 

GoDiagram Win only] 

• view events such as ObjectSingleClicked, BackgroundDoubleClicked, 

ObjectGotSelection, ObjectLostSelection, ObjectEnterLeave,  SelectionDeleted, 

BackgroundSelectionDropped, ClipboardPasted  



GoDiagram 81 Copyright © Northwoods Software 

• in-place text editing and other controls [Windows Forms only] 

• tooltips for objects 

• cursors for objects 

• default cursor for view [GoDiagram Win only] 

• passing unified input events to the current GoTool 

• properties to enable or disable selecting, moving, copying, resizing, deleting, 

inserting, linking, editing, mouse input, keyboard input, dragging out 

• drop shadows 

• greeking 

Views have a number of GoTool instances that they use to handle mouse and keyboard input.  

The following predefined tools are typically used: 

• GoToolManager – selection, choosing other tools to run, default keyboard 

commands  

• GoToolAction – support for individual objects such as buttons or knobs that need to 

get mouse down, mouse move, and mouse up events 

• GoToolContext – context menu support  for objects (but context menus are only 

available on Windows Forms) 

• GoToolCreating – construction and automatic resizing of new objects  

• GoToolDragging -- moving and copying objects 

• GoToolLinkingNew -- drawing new links between ports 

• GoToolRelinking -- reconnecting existing links to different ports 

• GoToolResizing -- resizing objects  

• GoToolRubberBanding – rubber-band box selection 

• GoToolSelecting – may change the selection on mouse up when no other tool is 

invoked 

• GoToolZooming – rubber-band specification of the view’s new document position 

and scale 

• GoToolPanning – automatic panning controlled by the direction and distance the 

mouse is from an initial point (also supports manual panning, separately) 



Display 

The primary purpose of GoView is to display a GoDocument and its GoObjects. You can use the 

default GoDocument that the view creates, or you can supply your own by setting the 

Document property.  It is also common to override CreateDocument so that the constructor for 

your view subclass will automatically create your own document class too. 

A GoView is just a regular Control. The part of a GoView that shows the document is called the 

canvas. A view, like any control, can have a border surrounding it, but the canvas area by itself 

does not support one.  

GoView also supports the display of its own view-specific objects. Thus each view on the same 

document can have its own set of GoObjects. These view objects will appear in front of all 

document objects. The most common example of a view object is a selection handle (a 

GoHandle).  

Scrolling 

GoView has built-in support for scrolling and either scroll bars. 

Because a view does not necessarily show the whole document, the DocPosition property 

indicates where the view's top-left corner is in the document. The DocExtentSize property 

indicates the size of the view's canvas in the document.  

Each view also provides the DocumentSize and DocumentTopLeft properties, which allow each 

view to have a potentially different notion of the document it is looking at.  In particular, the 

ShowsNegativeCoordinates property affects the value of both of these properties.  A true value 

allows the user to see objects positioned anywhere in the document.  The value of the 

DocumentSize property is then the same as the value of Document.Size and the value of the 

DocumentTopLeft property is the same as the value of Document.TopLeft.    This can be 

convenient when additional objects need to be added to the left of the existing ones, and you 

don’t want to shift the existing ones rightwards to avoid negative coordinates.  A false value 

prevents users from scrolling to parts of the document at negative coordinates.  The 

DocumentSize and DocumentTopLeft properties are changed to pretend the document only has 

coordinates at non-negative positions. 

Scrolling in Windows Forms 

For Windows Forms, there will be both a horizontal and a vertical scroll bar, but you can remove 

one or both of them by setting the respective properties to nothing/null. There is also a 

separate corner component, where the two scroll bars meet, that is visible when both scroll bars 

are visible. 



GoDiagram 83 Copyright © Northwoods Software 

 

The ShowVerticalScrollBar and ShowHorizontalScrollBar properties control when the scroll bars 

are visible.  The default value of GoViewScrollBarVisibility.IfNeeded will result in the scroll bar 

being visible only when the view is too small to display the whole document in the respective 

direction. 

Of course users can scroll the view by manipulating the scroll bars.  The ScrollSmallChange 

property determines how much the view scrolls when the user clicks on an arrow in a scroll bar. 

Programmatically you can call the ScrollPage and ScrollLine methods to scroll by most-of-the-

window and by ScrollSmallChange amounts.  The standard implementations of Page-Up, Page-

Down and mouse wheel turns call these methods. 

When drag-and-drop is enabled, users can also cause automatic scrolling when they are 

dragging near the edge of the canvas. This autoscroll margin is specified by the 

AutoScrollRegion property.  You can disable this behavior by setting the margin width and 

height to zero.  You can customize how long to wait in the autoscroll region by changing the 

AutoScrollDelay property, and how quickly it scrolls by changing the AutoScrollTime property. 

Scaling and Coordinate Systems 

GoView also supports zooming, to change the scale at which the objects are drawn. The 

DocScale property is normally 1.0f; smaller values make objects appear smaller on the screen; 

larger values correspond to zooming into the diagram.  For example, when the DocScale value is 

0.5f, objects will appear half as large as normal. 

When setting the DocScale property the GoView.LimitDocScale method is called to ensure a 

new value for the DocScale property meets your requirements—by default it makes sure the 

scale is between 0.01f and 10.0f.  If you want to extend or modify the permitted range, perhaps 

even computed dynamically, you will need to override GoView.LimitDocScale. 



The ability to scroll and zoom the view means that the coordinate system used in a view is 

different from that used in the document. The overloaded ConvertDocToView and 

ConvertViewToDoc methods perform the basic transformations between document PointFs, 

SizeFs, and RectangleFs and view Points, Sizes, and Rectangles. 

The RescaleToFit method changes the DocScale property so that all of the objects in the 

document can be seen in the view without scrolling. 

The RescaleWithCenter method changes the DocScale and tries to keep the view centered 

about a given document point. 

Painting 

As a control, GoView overrides OnPaint in order to render the view. This is responsible for 

scaling and translating the Graphics and getting a document-coordinates clipping rectangle. It 

then calls PaintView, which calls methods to fill in the paper color (PaintPaperColor), to draw 

any additional background such as an image (PaintBackgroundDecoration), and then to draw all 

of the layers of document objects and view objects (PaintObjects), including any grid or sheet of 

paper that may be held in the BackgroundLayer of the view. 

You can override PaintView or any of the three methods called by PaintView in order to get 

different effects; overriding PaintPaperColor and PaintBackgroundDecoration are the most 

common.  PaintPaperColor uses the Control.BackColor property when the view’s document’s 

PaperColor property is not Color.Empty.  The Control.ForeColor, Control.Text, and Control.Font 

properties are currently not used. 

The PaintView method uses the SmoothingMode, TextRenderingHint, and InterpolationMode 

properties to control the quality of how all objects are painted.  If you want to change how a 

particular kind of object is drawn, for example if you want lines to be drawn with jagged edges 

rather than smoothly with anti-aliasing, you will need to override the GoObject.Paint method 

for that object. 

The GetBitmapFromCollection method returns a Bitmap holding the rendering of all of the 

objects in the argument collection.  The bitmap does not include any background or view 

objects. 

The GetBitmap method returns a Bitmap of the view itself, at the current DocScale and 

DocPosition, with the current background and all visible document and view objects in the 

DisplayRectangle. 

Views support the notion of greeking, which simplifies or omits the painting of objects at small 

scales.  This effect helps avoid clutter and improves performance, particularly when the painted 

area would be too small for the user to see well.  The PaintGreekScale and PaintNothingScale 



GoDiagram 85 Copyright © Northwoods Software 

specify the default scales at which a simplified rendering and at which no rendering should 

occur.  Normally only the GoText and GoPort classes perform greeking. 

Printing 

GoView also provides support for printing in GoDiagram Win applications. The Print method 

brings up the print dialog and then starts a PrintDocument, which repeatedly calls 

PrintDocumentPage.  You can easily override PrintDocumentSize, PrintDocumentTopLeft, and 

PrintScale to customize how much is printed, on how much of the page, and at what scale. 

PrintScale can also be set.  Override PrintDecoration to add headers and/or footers or any other 

decoration on each page. Override PrintView, like PaintView, to change what things get 

printed--by default the paper color and the view objects are not printed.  But you can set 

GoView.PrintsViewObjects to true to show view objects such as selection handles. 

Selection 

Each GoView has a GoSelection that holds the currently selected document objects for that 

view. The default selection object is an instance of GoSelection, but you can override 

GoView.CreateSelection to return your own subclass. The selection object is also responsible 

for managing selection handles in the view. Many events and methods in GoView deal with the 

current selection, either by changing it, or by operating on its collection of objects. Important 

examples include: EditCut, EditCopy, EditPaste, DeleteSelection, MoveSelection, 

CopySelection, SelectAll, SelectInRectangle, and SelectNextNode. 

GoSelection implements IGoCollection, so you can use the Add, AddRange, Remove, Contains, 

and other collection methods for programmatically manipulating the selection.  GoSelection has 

additional methods such as Select, which makes its argument the one and only selected object, 

and Toggle, which Adds the argument if it wasn’t in the selection or Removes it if it was. 

As with any .NET collection, you can easily iterate over the objects in the selection by using the 

foreach construct.  But it is important to remember that you must not modify the selection 

while you are iterating, if you want to avoid unpredictable behavior.  It is very easy to make this 

mistake accidentally.  Perhaps the most commonly programmed error is to iterate over the 

selection, removing the objects from the document along the way.  But removing an object from 

a document will also have the side effect of removing it from the selection of each view of the 

document. 

The first selected object is known as the primary selection; any other selected objects form the 

secondary selection.  Primary is a read-only property whose value is the primary selection, or 

nothing/null if no object is selected.  You can restrict the number of selected objects for a view, 

the Count property, by setting the GoView.MaximumSelectionCount property. 



GoSelection is also responsible for creating handles for selected objects.  The 

CreateBoundingHandle and CreateResizeHandle methods are responsible for allocating handles 

of the appropriate size and position, associating them with the selected object, and then adding 

them to the view.  RemoveHandles is responsible for disassociating them with the selected 

object and removing them from the view.  You can look for an existing handle for a particular 

object (in a particular view/selection) by using FindHandleByID.  You can iterate over all the 

handles for a selected object by using GetHandleEnumerable. 

The GoView.ResizeHandleSize and ResizeHandlePenWidth properties determine the default 

size and appearance for resize handles.  GoView.BoundingHandlePenWidth help determine the 

appearance of bounding handle rectangles.  Handle IDs help distinguish between multiple 

handles for the same selected object. 

The GoView.PrimarySelectionColor and SecondarySelectionColor control the color of selection 

handles.  When the view loses focus, the NoFocusSelectionColor is used instead, unless the 

HideSelection property is true, in which case the selection handles all disappear when the view 

does not have focus. 

For most applications, a user will expect that the top-level nodes (and links) of a diagram are 

what the user can select.  Thus these objects, which are usually instances of subclasses of 

GoGroup, will be the objects in the GoSelection collection. 

However, it is often the case that what gets a selection handle is not the top-level object, a 

group, but some child object inside the group.  For example, users may expect to select and 

resize the icon of a node.  Thus resize handles should not be on the whole group, but just on the 

node’s icon. Similarly, a rubber band selection rectangle need not include all of a node to select 

it, but just the node’s entire icon.   

To enable this sleight-of-hand, GoObject has a SelectionObject property that defaults to this 

object itself.  A class implementing the above example node would override SelectionObject as 

follows: 

 

VB.NET: 

  Public Overrides ReadOnly Property SelectionObject() As GoObject 

    Get 

      If Not Me.Icon Is Nothing Then 

        Return Me.Icon 

      Else 

        Return Me 

      End If 

    End Get 



GoDiagram 87 Copyright © Northwoods Software 

  End Property 

 

C#: 

  public override GoObject SelectionObject { 

    get { 

      if (this.Icon != null) 

        return this.Icon; 

      else 

        return this; 

    } 

  } 

Then when an object gets selected or loses it, it calls AddSelectionHandles or 

RemoveSelectionHandles not on itself but on its SelectionObject, here its icon.  The distinction 

between the two objects is carried on by the IGoHandle interface—typically the 

IGoHandle.SelectedObject property refers to the top-level node; the IGoHandle.HandledObject 

property refers to the top-level node’s SelectionObject. 

Grids 

Each view can display a grid, using a GoGrid that is available as the GoView.BackgroundGrid 

property and that is held in the BackgroundLayer of the view.  The grid’s properties are 

accessible either directly through the GoView.BackgroundGrid property or via the 

GoView.Grid… properties.  The grid is not part of a document, so that not all views on a 

document have to display a grid or the same grid.  But the spacing and sizing of the grid, like 

view objects, are measured using document coordinates. 

 

The GridStyle property specifies whether the grid is drawn as dots, crosses or lines, the latter 

either in both directions or just horizontally or just vertically. 



The GridOrigin and GridCellSize properties control the spacing of the grid’s cells and whether 

the grid starts at (0, 0).  The cell size is independent of the distance the scroll bar scrolls when 

the user clicks on a scroll bar arrow or a scroll button. 

The GridLineColor, GridLineWidth, GridLineDashStyle, and GridLineDashPattern properties all 

control how the grid lines are drawn. 

You can display both major lines and minor lines by specifying the GridMajorLineFrequency 

property. Positive values indicate how often vertical and horizontal lines should be drawn as 

“major” lines.  Just as the GridLine… properties control the appearance of  regular (or “minor”) 

lines, the GridMajorLine… properties control the appearance of major lines. 

The GridSnapDrag property controls whether a user’s dragging of objects automatically 

relocates them to the grid points. 

The GridSnapResize property controls whether a user’s resizing of an object automatically 

positions its bounds to the grid. 

Grid snapping moves the Location of objects (when dragging) to a point in a grid cell.  You can 

control which spot in the cell that is by setting the GridSnapCellSpot property. 

Sheets 

Each view can also display what appears to be a sheet of paper.  This is implemented by having a 

GoSheet that is held in the BackgroundLayer of the view, accessible via the GoView.Sheet 

property.  Initially there is no sheet, but by setting GoView.BackgroundHasSheet property to 

true, one will be created by calling GoView.CreateSheet and setting GoView.Sheet. 

When there is a GoView.Sheet, all of the GoView.Grid… properties refer to the 

GoView.Sheet.Grid, rather than to the GoView.BackgroundGrid. By default the sheet’s grid is 

limited to the sheet of paper. 



GoDiagram 89 Copyright © Northwoods Software 

 

The above screen shot shows a GoView with BackgroundHasSheet set to true.  

GoView.SheetStyle is set to GoViewSheetStyle.Sheet, so that the view’s GoSheet is visible.  The 

Control.BackColor is set to Color.LightCoral; the GoDocument.PaperColor is Color.White.  The 

GoView.BackgroundGrid, which covers the whole GoView, is not visible and is not used.  The 

GoView.Sheet.Grid displays both major and minor grid lines. 

Each sheet can also show the paper margins.  In the screenshot above it is barely visible as a 

very translucent gray drawn along the edges of the sheet.  The SheetShowsMargins, 

SheetMarginColor, SheetTopLeftMargin, and SheetBottomRightMargin properties control the 

size and appearance of any margins.  The sizes of the margins must be set explicitly by your 

application if you want them to reflect the size of any print pages, since each GoView does not 

know about any printers that the user may have chosen. 

How much of the sheet is shown in the view as the view is resized is controlled by the 

SheetStyle and SheetRoom properties, and is implemented by the GoView.UpdateExtent 

method.  A GoView.SheetStyle value of GoViewSheetStyle.WholeSheet, for example, will 

automatically rescale and scroll the view as the view changes size, so that the whole sheet 

remains visible, much as in the screen shot above.  A value of GoViewSheetStyle.Sheet will have 

the sheet be visible, but the view will not automatically rescale and scroll as its size is changed.  

The default value is GoViewSheetStyle.None—the Sheet is not visible and UpdateExtent does 

nothing.  The value of GoView.SheetStyle does not limit the user’s scrolling and/or zooming. 



When there is a Sheet and the SheetStyle is not None, printing is limited to a single sheet of 

paper.  If you really want to print multiple pages, you can temporarily set the SheetStyle to 

None, or you can override the PrintDocumentSize, PrintDocumentTopLeft, and PrintScale 

properties to calculate the values you need. 

Shadows 

Each view has a notion of the standard shadow to be used for objects that display a drop-

shadow effect and have a true value for the GoObject.Shadowed property. 

 

The effect is controlled by the following GoView properties and methods: ShadowOffset, 

ShadowColor, GetShadowBrush, and GetShadowPen.       Each object can change the standard 

appearance by overriding GoObject.GetShadowOffset, GoObject.GetShadowBrush, and 

GoObject.GetShadowPen. 

Events 

GoView is responsible for handling events that occur when the user interacts with the view.  

Each GoView also has view-specific state that other code may care about tracking. Because 

GoView is a Control, most cases are handled by the predefined Control events.  In fact, all of the 

additional properties that GoView defines are covered by the GoView.PropertyChanged event. 

However GoView does define additional events that more abstractly deal with common user 

actions.  These events are: 

• ObjectSingleClicked – the user clicked on an object 

• ObjectDoubleClicked – the user clicked quickly twice on an object 

• ObjectContextClicked – the user context clicked on an object 

• ObjectSelectionDropReject – the user is dragging the selection on an object—allow 

an event handler or the object to reject a drop 

• ObjectSelectionDropped – the user dropped the selection on an object  

• ObjectHover [GoDiagram Win only] – the user has left the mouse motionless over 

an object for a while determined by GoView.HoverDelay 



GoDiagram 91 Copyright © Northwoods Software 

• ObjectEnterLeave – the user has moved the mouse into or out of a document 

object, either as a mouse-over or as a dragging of the selection 

• BackgroundSingleClicked – the user clicked in the background 

• BackgroundDoubleClicked – the user double clicked in the background 

• BackgroundContextClicked – the user context clicked in the background 

• BackgroundSelectionDropReject – the user is dragging the selection in the 

background—allow an event handler to reject a drop 

• BackgroundSelectionDropped – the user dropped the selection in the background 

• BackgroundHover [GoDiagram Win only] – the user has left the mouse motionless 

in the background for a while determined by GoView.HoverDelay 

• ObjectGotSelection – an object has been added to the current selection 

• ObjectLostSelection -- an object has been removed from the current selection 

• SelectionStarting – some operations that may make many changes to the view’s 

Selection will surround all of the ObjectGotSelection and/or ObjectLostSelection 

events with a SelectionStarting event beforehand and a SelectionFinished event 

afterwards.  If you have other Controls that you want to keep up-to-date with the 

Selection, you can optimize updating those Controls using these two paired events. 

• SelectionFinished – (see SelectionStarting) 

• SelectionMoved – the user finished moving the selected objects 

• SelectionCopied – the user just copied the selected objects 

• SelectionDeleting – the user is about to delete the selected objects; the deletion 

can be cancelled 

• SelectionDeleted – the user has just deleted the selected objects 

• LinkCreated – the user finished drawing a new link 

• LinkRelinked – the user finished reconnecting an existing link 

• ObjectResized – the user finished resizing an object 

• ObjectEdited [Windows Forms only] – the user finished editing an object 

• ClipboardPasted – the user just pasted something from the clipboard 

Some of these events have no corresponding document change.  Others, such as 

SelectionMoved, clearly involve changes to objects in a document.  The difference is that the 



SelectionMoved event is specific to a view and only occurs after the user has moved the 

selected objects.  There are GoDocument.Changed events for each object that gets moved even 

if the move occurs programmatically rather than interactively.  For some events like 

GoView.SelectionMoved, there is a further difference in that this event only occurs once, even 

if GoView.DragsRealtime is true, but there will be many GoDocument.Changed events for the 

multiple objects moved many times during a drag. 

As with other Control events, you can add your own event handlers for these events, or if you 

have your own subclass of GoView, you can override the On… methods to handle the events.  

These events are described more fully later in this chapter. 

Changes to objects that belong to a view, including insertions and removals, provide notification 

through the RaiseChanged method, just as for documents.  However, there is no 

GoView.Changed event for GoObject changes and thus no GoView.OnChanged method.  

Getting notification of changes to view objects is rarely needed.  But if it is necessary, you can 

override RaiseChanged to observe changes to view objects. 

Document Changed Events and Views 

GoView handles GoDocument.Changed events, which is how it can keep its display up-to-date 

with changes to the document and its objects.  The method GoView.OnDocumentChanged is 

invoked to handle document changes.  This method notices when objects are inserted, changed, 

or removed, or when other document or layer changes occur that affect the display in the view.  

It then invalidates the appropriate regions, so that the OnPaint method is called at a later time 

to actually repaint the objects visible in those regions. 

You can override GoView.OnDocumentChanged if you want your own view-specific code to 

respond to changes to documents or document objects.  This is preferable to adding event 

handlers to a document if you are defining your own subclass of GoView. 

Input Events 

GoView provides a slightly more general notion of mouse and keyboard input by using the 

GoInputEventArgs class.  This class holds unified input event args information.  It holds the 

position where the mouse event occurred, in both view and document coordinates.  It also 

remembers the mouse buttons, such as MouseButtons.Right, and key modifiers, such as 

Keys.Control.  For keyboard input, it holds the key that was pressed, along with the key 

modifiers.  For drag-and-drop events, the information is like that for mouse events.  Mouse 

wheel rotation events are included too, with the Delta property. 

In case you need additional information, the original Windows Forms MouseEventArgs, 

DragEventArgs, or KeyEventArgs is kept in the GoInputEventArgs too.   



GoDiagram 93 Copyright © Northwoods Software 

GoView overrides the low-level OnKeyDown, OnMouseDown, OnMouseMove, OnMouseUp, 

OnDoubleClick, OnMouseWheel, OnDragOver, and OnDragDrop methods to capture the input 

event information.  This information is remembered in a GoInputEventArgs instance as the 

GoView.LastInput property. 

For the convenience of code that needs to remember the input state at the time of a mouse 

down, OnMouseDown also remembers the input event information in a separate 

GoInputEventArgs instance as the FirstInput property. 

If you do nothing to override the input handling of a GoView, the default behavior gives you 

input handling that anyone familiar with a graphical object editor would expect. Objects can be 

selected, moved, and resized using the left mouse button. Multiple selections can be made 

using shift-left button or control-left button or with rubber-band selection. Links can be created 

by left button down and drag on a GoPort. 

Tools 

The code implementing the standard view behaviors is not actually in the GoView class.  

Instead, input events are passed on to instances of small, narrowly defined classes that are 

responsible for implementing the policies and mechanisms of user input.  These classes 

implement IGoTool, and are normally inherited from GoTool. 

A normal instance of GoView will have a set of tools that it can use.  Each GoView always has a 

current tool, held by the Tool property.  Each GoView also has a DefaultTool property.  The 

initial tool is also the default tool, which is created as a result of the view’s constructor calling 

CreateDefaultTool.  The currently selected tool implements the view’s “mode” of user 

interaction. 

GoView starts each tool by calling its Start method, to give it a chance to initialize any state.  As 

each tool runs, it handles unified input events with the DoMouseDown, DoMouseMove, 

DoMouseUp, DoMouseHover, DoCancelMouse, DoMouseWheel, and DoKeyDown methods.  

When the view’s current tool is set to a new tool, GoView calls the old tool’s Stop method so 

that it can clean up before starting the new tool.  A tool can terminate itself by calling 

GoTool.StopTool, which sets the view’s current tool to null.  Setting GoView.Tool to 

nothing/null stops the current tool, sets the Tool property to the value of the DefaultTool 

property, and starts that default tool. 

GoToolManager and Standard GoView Tools 

The normal default tool is an instance of GoToolManager.  This tool’s primary purpose is to 

implement the default keyboard commands and to invoke “mode-less” tools according to the 

object (if any) at the mouse point. 



GoView divides up its set of tools into three lists, one each for mouse down and mouse move 

and mouse up, according to when the particular tool is likely to be startable.  GoToolManager’s 

DoMouseDown, DoMouseMove, and DoMouseUp methods then just iterate through the 

corresponding list of tools to find the first one whose CanStart method returns true.  The 

CanStart method is responsible for looking at the current state of the document, the view and 

the current input event and deciding if it is appropriate for that tool to start operating.  As soon 

as the tool manager finds such a tool, it makes that tool the view’s current tool, thereby 

stopping itself and starting the selected tool. 

The GoView.MouseDownTools list normally includes instances of GoToolAction, 

GoToolContext, GoToolRelinking, and GoToolResizing.  These tools expect to get 

DoMouseMove and DoMouseUp calls during their operation. 

The GoView.MouseMoveTools list normally includes instances of GoToolLinkingNew, 

GoToolDragging and GoToolRubberBanding.  These tools expect to get additional 

DoMouseMove and DoMouseUp calls during their operation. 

The GoView.MouseUpTools list normally normally contains only an instance of 

GoToolSelecting.  This tool does not expect to get any additional DoMouseUp calls during its 

operation, because starting the tool also stops it. 

Here’s a class hierarchy diagram, starting with GoTool: 

 

The low-level event handlers capture input event information and then call view methods to 

perform the default action, which is to invoke the current tool’s corresponding method.  Finally 

they call the base methods, so that the respective event handlers are all called.  For example, 

OnMouseMove calls DoMouseMove followed by base.OnMouseMove.  DoMouseMove just 

calls this.Tool.DoMouseMove.  The reason for this indirection is to allow you to put your event 



GoDiagram 95 Copyright © Northwoods Software 

handling code in either the view, the tool, or the object, whichever is most sensible for 

organizing your program. 

Many events are ignored in Windows Forms if the view does not have focus.  A mouse down 

event will try to acquire focus for the view. 

The DrawDemo sample includes a custom tool to allow users to create GoStroke instances by 

clicking with the mouse where the points of the stroke should be.  This tool is used in a “modal” 

fashion, so it is not included in the lists of mouse tools whose CanStart methods are called.  A 

command can enter this stroke-drawing mode just by setting the view’s Tool property to an 

instance of this tool. 

The GraphView class, in the NodeLinkDemo sample, uses two customized link-drawing tools to 

highlight ports during linking and during relinking.  The constructor has the code that replaces 

the standard linking tools, so that only the newly modified tools are used when the user 

performs a linking action in a view. 

High Level Mouse Events 

Many of the events defined for GoView are more abstract than mouse or key actions.  Examples 

include SelectionMoved, LinkCreated and ObjectEdited, although they are all instigated by the 

user’s mouse or key actions. 

For selection changes, the ObjectGotSelection and ObjectLostSelection events notify all 

registered GoSelectionEventHandlers that an object has just been selected or deselected.  The 

GoSelectionEventArgs class has a GoObject property that indicates the object in the document. 

The SelectionMoved and SelectionCopied events are raised by the GoToolDragging tool after 

the user has moved or copied the currently selected objects.  Unlike GoDocument.Changed 

events on the individually selected objects or mouse move events on the view, the 

SelectionMoved and SelectionCopied events only occur once the user has successfully moved 

or copied the selection. 

The SelectionDeleting and SelectionDeleted events occur just before and after the user is 

deleting the currently selected objects, in the implementation of GoView.DeleteSelection.  

SelectionDeleting has a CancelEventArgs, which allows code to stop the deletion by setting the 

Cancel property to true. 

The LinkCreated and LinkRelinked events are raised by the GoToolLinkingNew and 

GoToolRelinking tools, respectively, when the user has successfully completed those 

operations. 



The ObjectResized event is raised by the GoToolResizing tool after the user’s resizing is 

complete.  Again, the event happens only once, whereas a GoObject.ChangedBounds subhint 

Changed event may occur repeatedly as the user is resizing the object, particularly if 

GoObject.ResizesRealtime is true. 

The ObjectEdited event should be raised by those objects implementing GoObject.DoEndEdit, 

such as GoText for in-place editing.  This event only applies to Windows Forms. 

The ObjectSelectionDropReject event is raised during a drag-and-drop to allow any GoObject 

the opportunity to reject a drop.  Similarly, the BackgroundSelectionDropReject event is raised 

during a drag-and-drop when the pointer is not over any document object.  To reject the drop, 

you can set: 

  e.InputState = GoInputState.Cancel 

When the …SelectionDropReject event is not cancelled, the corresponding event occurs for the 

drop: ObjectSelectionDropped or BackgroundSelectionDropped. 

The ExternalObjectsDropped event occurs in GoView.DoExternalDrop, so that you can get 

notification when GoObjects are copied into the view due to a drag-and-drop that started from 

another window.  This is convenient when you want to modify the dropped objects, which will 

be selected, perhaps to move them or to change some of their properties.  Note that if you 

define your own data formats to be handled on a drop, such as Strings causing particular nodes 

to be created and added to your document, then the ExternalObjectsDropped event is not 

raised. 

The ClipboardPasted event occurs during GoView.EditPaste, not during 

GoView.PasteFromClipboard or GoDocument.CopyFromCollection, which are more general 

methods for copying objects. 

Mouse Click Events 

One of the fundamental functions of GoView is the ability to handle mouse clicks. The selection 

may change or a click may be passed on to any visible object on top at that point.  This will cause 

the view to raise events for the benefit of any interested handlers. 

For clicks, the event depends on whether there was a selectable object at the mouse point and 

what kind of click it was.  The ObjectSingleClicked, ObjectDoubleClicked, ObjectContextClicked, 

and ObjectHover events notify all registered GoObjectEventHandlers that an object was clicked 

in a certain manner, or that the mouse rested for a while at one spot over an object.  The 

GoObjectEventArgs type has a GoObject property to indicate the object, and because this class 

inherits from GoInputEventArgs, the event position, buttons, and modifiers are available also. 



GoDiagram 97 Copyright © Northwoods Software 

When there is no object at the click point, the BackgroundSingleClicked, 

BackgroundDoubleClicked, BackgroundContextClicked and BackgroundHover events notify 

GoInputEventHandlers.  The event args type is GoInputEventArgs, which provides the mouse 

event information, but of course there is no GoObject associated with this event. 

GoView does not affect the behavior of the Control.Click event.  You can use it in the unlikely 

case that you don’t care where the user clicks in the view.  Similarly, GoView does not affect the 

behavior of the Control.MouseHover event in GoDiagram Win, because that event only happens 

at most once while the mouse stays inside the view, even if the user moves the mouse and stays 

over different objects. 

A single or double click will invoke either DoSingleClick or DoDoubleClick.  A logical right mouse 

click will invoke the DoContextClick method.  These methods all behave similarly.  They each try 

to find the selectable object underneath the mouse event point.  If they find nothing, they raise 

the appropriate background clicked event. 

If they do find an object, they first raise the appropriate object clicked event.  Then they call the 

object’s On…Click method, such as OnSingleClick.  This gives the object a chance to implement 

click behavior in its defining class, rather than by overriding methods in a view or by adding view 

event handlers. 

If the GoObject.On…Click method returns false, the object’s parent group’s On…Click method is 

called, on up the parent tree, until the On…Click method returns true or until there is no parent.  

This behavior allows a group to define default behavior for all of its parts; e.g. when a particular 

part does not handle the click by returning true from the On…Click method. 

Context Menus 

To implement context menus customized for your nodes, you should override 

GoObject.GetContextMenu or GetContextMenuStrip in your node class.  For example: 

 

VB.NET: 

Public Overrides Function GetContextMenu(ByVal v As GoView) As 

GoContextMenu 

  If (TypeOf v Is GoOverview) Then Return Nothing 

  Dim cm As ContextMenu = New GoContextMenu(v) 

  If (CanDelete()) Then 

    cm.MenuItems.Add(New MenuItem("Cut", 

                          New EventHandler(AddressOf Cut_Command))) 

  End If 

  If (CanCopy()) Then 

    cm.MenuItems.Add(New MenuItem("Copy", 



                         New EventHandler(AddressOf Copy_Command))) 

  End If 

  If (cm.MenuItems.Count > 0) Then 

    cm.MenuItems.Add(New MenuItem("-")) 

  End If 

  cm.MenuItems.Add(New MenuItem("Properties", 

                   New EventHandler(AddressOf Properties_Command))) 

  Return cm 

End Function 

 

Public Sub Cut_Command(ByVal sender As Object, ByVal e As EventArgs) 

  If TypeOf sender Is MenuItem Then 

    Dim v As GoView = GoContextMenu.FindView(CType(sender, 

MenuItem)) 

    v.EditCut() 

  End If 

End Sub 

 

C#: 

public override GoContextMenu GetContextMenu(GoView v) { 

  if (v is GoOverview) return null; 

  ContextMenu cm = new GoContextMenu(v); 

  if (CanDelete()) 

    cm.MenuItems.Add(new MenuItem("Cut", 

                            new EventHandler(this.Cut_Command))); 

  if (CanCopy()) 

    cm.MenuItems.Add(new MenuItem("Copy", 

                            new EventHandler(this.Copy_Command))); 

  if (cm.MenuItems.Count > 0) 

    cm.MenuItems.Add(new MenuItem("-")); 

  cm.MenuItems.Add(new MenuItem("Properties", 

                       new EventHandler(this.Properties_Command))); 

  return cm; 

} 

 

public void Cut_Command(Object sender, EventArgs e) { 

  GoView v = GoContextMenu.FindView(sender as MenuItem); 

  if (v != null) 

    v.EditCut(); 

} 

GoContextMenu remembers the GoView in which it is operating.  Then the MenuItem.Clicked 

event handler can find the view by using the GoContextMenu.FindView method. 



GoDiagram 99 Copyright © Northwoods Software 

In GoDiagram Win when you specify the Control.ContextMenu property, the view would 

automatically bring up this context menu when the user right (context) clicks anywhere in the 

window.  GoToolContext disables this behavior when the right click is on an object, to avoid 

interfering with the ObjectContextClicked event.  Hence the GoView.ContextMenu property 

just specifies the default context menu, when the user clicks in the background or on some 

object that does not supply a custom context menu. 

Mouse Over Events 

Similarly, in GoDiagram Win when the mouse moves without any mouse button being held 

down, the GoToolManager tool invokes the GoView.DoMouseOver method.  This in turn calls 

DoToolTipObject on the object (perhaps nothing/null) at the mouse event point, then 

GoObject.OnMouseOver on the object and its parents until OnMouseOver returns true, and 

finally DoDefaultCursor if no OnMouseOver call handled the mouse over event.  This behavior 

ensures that every object will have a chance to display a tool tip and to have custom behavior in 

the OnMouseOver method.  GoHandle objects, for example, may change the cursor in the 

OnMouseOver method. 

DoMouseOver is also responsible for calling DetectHover, which uses a Timer to see if some 

sort of hover event needs to be raised.   

DoToolTipObject is organized in the same manner as the other Do…Click methods—it calls 

GetToolTip on the object and its parents until GetToolTip returns a non-null string.  This string is 

displayed by the view’s ToolTip object.  You can turn off all tooltips by simply setting the 

GoView.ToolTip property to nothing/null. 

Note that the GoNode.ToolTipText property provides an implementation of tooltip strings for 

all instances of GoNode.  You can just set this property when the tooltip information is constant 

for each node, or you can override getting this property to compute the string each time.  If you 

want to display tooltips for other objects, such as links or ports, you will need to override the 

GoObject.GetToolTip method to return a string. 

GoLink, GoLabeledLink, and GoView also implement the ToolTipText property.  For GoView, 

the ToolTipText property determines the default tooltip for the whole view. 

GoToolManager, besides calling GoView.DoMouseOver, also calls GoView.DoObjectEnterLeave 

if the document object immediately under the mouse point changes.  This allows 

GoView.ObjectEnterLeave event handlers to update UI considering the “current” object(s) 

where the mouse is, and allows overrides of GoObject.OnEnterLeave to perform similar actions. 



Disabling Functionality 

Views also implement the IGoLayerAbilities interface, which defines the properties and 

methods used by Go to determine if the user may perform certain operations.  These are: 

• CanSelectObjects, AllowSelect 

• CanMoveObjects, AllowMove 

• CanCopyObjects, AllowCopy 

• CanResizeObjects, AllowResize 

• CanReshapeObjects, AllowReshape 

• CanDeleteObjects, AllowDelete 

• CanInsertObjects, AllowInsert 

• CanLinkObjects, AllowLink 

• CanEditObjects, AllowEdit 

Setting any of the Allow… properties to false will disable the default behavior that allows the 

user to do that operation.  Of course if any of the corresponding Can… methods on the object, 

its layer, or its document return false, the behavior is also disabled. 

For convenience, the SetModifiable method allows one to set the move, resize, reshape, delete, 

insert, link, and edit ability properties all at once.  Because there is such fine granularity on 

limiting user behavior, there is no Modifiable property. 

Drag-and-Drop, Moving and Copying 

The GoToolDragging class implements dragging behavior.  For the view to make the dragging 

tool the current tool, at least one of the following GoView methods or properties must be true 

during a mouse drag: CanMoveObjects, CanCopyObjects, or AllowDragOut. 

All of the dragging behavior that occurs within a GoView is handled by GoToolDragging, 

Within a view, a drag moves the selected objects; between views a drag and drop copies the 

selected objects, and from another window the view can decide to accept the drop and to 

handle it in an application specific manner. If the user cancels a drag within a GoView, the 

selected objects are restored to their original locations.  

For internal drag-and-drops, those that start and end within the same GoView, the default 

behavior is to move the selected objects.  The DragsRealtime property controls whether the 

actual selected objects are moved along with the mouse, or whether an image of the selected 



GoDiagram 101 Copyright © Northwoods Software 

objects is moved, leaving the selection in place until the move is completed.  This image is part 

of the DragSelection in GoToolDragging.  The default value for GoView.DragsRealtime is false. 

GoToolDragging calls GoView.MoveSelection to perform the moving of the selection.  Each 

object move causes a GoDocument.Changed event indicating that an object’s bounding 

rectangle has changed.  When GoView.DragsRealtime is true, there will be a lot of Changed 

events even before the final moves associated with the completion of the move gesture due to a 

drop.  Setting GoView.DragsRealtime to false is more efficient when an undo manager is in 

effect, because all of the intermediate positions are not saved.  After the move is complete, the 

tool raises a GoView.SelectionMoved event. 

When the user holds down the CTRL key during a drag, the view prepares to copy the selection 

rather than move it.  Because the selection is not copied until the user completes the drag, the 

DragSelection with the image of the selected objects is always shown moving with the mouse. 

GoToolDragging calls GoView.CopySelection to perform the copying of the selection.  The 

copied objects are added to the view’s document using GoDocument.CopyFromCollection.  

Each copy causes a GoDocument.Changed event indicating an object insertion.  After the copy is 

complete, the tool raises a GoView.SelectionCopied event. 

GoToolDragging also raises GoView.ObjectEnterLeave events and makes calls to 

GoObject.OnEnterLeave by calling GoView.DoObjectEnterLeave.  That method is called 

frequently in Windows Forms as the user drags the mouse around.  Your 

GoView.ObjectEnterLeave event handler can detect whether a drag or a mouse-over is taking 

place by checking whether the GoView.Tool is a GoToolDragging or not. 

GoToolDragging also raises GoView.BackgroundSelectionDropReject and 

GoView.ObjectSelectionDropReject events in GoDiagram Win by calling 

GoView.DoSelectionDropReject from GoToolDragging.DoMouseMove.  If the event is cancelled 

by setting the InputState to Cancel (or if the GoObject.OnSelectionDropReject method returns 

true), the drop is disallowed.  This supports interactive control over whether a drop is allowed at 

a particular location in a view, or over a particular document GoObject. 

GoView.DoSelectionDropReject is also called by GoToolDragging.DoMouseUp, on all platforms.  

If it returns true, the drag operation is cancelled; if it returns false, the drag is finished and the 

drag calls the GoView.DoSelectionDropped method.  This supports easier customization of the 

action to be performed on a drop, particularly when the drop occurs on on object. 

It is a moderately common case to override GoObject.OnSelectionDropped for a class 

representing a “container”, to add the dropped objects to the container.  The dropped objects 

are accessible as the GoView.Selection; they will normally have been added as top-level objects 



to the layer(s) of the document.  Your code can then decide how to add them to your 

“container” object. 

And you can easily control whether the “container” accepts particular drops by overriding 

GoObject.OnSelectionDropReject, returning true when not allowed.  You can not only examine 

this particular object upon which the drop might occur, but also the objects in the 

GoView.Selection, to decide if a drop might be acceptable. 

External drag and drop in GoDiagram Win 

In GoDiagram Win SelectionDropReject and SelectionDropped events occur not only for 

internal drag-and-drops using GoToolDragging, but also upon an external drop, in 

GoView.DoExternalDrop.  They do not happen interactively during the external drag, because 

the GoView.Selection does not yet hold the objects that are going to be dropped—in fact those 

GoObjects will not yet exist.  However, if you set GoView.ExternalDragDropsOnEnter and 

GoView.DragsRealtime to true, a drag enter event will call DoExternalDrop, thereby creating 

GoObjects and adding them to the document and populating the GoView.Selection.  Further 

drags will then use the view’s GoToolDragging tool to actually continue and perhaps finish the 

drag-and-drop, thereby enabling interactive SelectionDropReject behavior as well as the proper 

positioning of objects according to any grids. 

In GoDiagram Win you need to set the GoView.AllowDrop property to true to enable drag-and-

drop behavior.  (This is not specific to GoView--you need to do this for any Windows Forms 

Control.)  This property enables the user to drop onto the view, whether the drag started in that 

view or in any other window. 

GoView in GoDiagram Win adds the AllowDragOut property, which enables the user to drag 

something from the view out to a different window.  The default value for this property is true, 

except in the GoOverview class, which also sets AllowDrop false. 

To customize a view as a drop target from other controls, you'll want to override 

DoExternalDrag and DoExternalDrop.  By default DoExternalDrag sets the DragEventArgs Effect 

based on whether CanInsertObjects returns true.  By default DoExternalDrop handles an event 

data object format of GoSelection.  The selection is copied into the document using 

GoDocument.CopyFromCollection, passing an offset so that the copied objects are near the 

drop point.  You’ll want to override DoExternalDrop if you need to to handle a different data 

format used by a source window. 

The ProtoApp and NodeLinkDemo samples provide examples of how to drag-and-drop 

TreeNodes from a TreeView into a GoView that overrides the DoExternalDrop method. 



GoDiagram 103 Copyright © Northwoods Software 

If you need somewhat more extensive customization, you can just override all the standard 

OnDragOver, OnQueryContinueDrag, and OnDragDrop event handling methods. 

Normally an external drag-and-drop will not raise GoView.ObjectEnterLeave events.  However, 

if the drop would create GoObjects that could be dragged around, you can set 

GoView.ExternalDragDropsOnEnter and GoView.DragsRealtime to true.  This will cause an 

external drag enter to actually perform the DoExternalDrop immediately; the resulting selection 

is then dragged around by the view’s GoToolDragging tool. 

Resizing 

Views also have default behavior for resizing objects, as implemented by the GoToolResizing 

class.  When the user does a mouse down on a resize selection handle of an object whose 

CanResize method returns true, the view makes the GoToolResizing tool current, thereby going 

into resizing mode. This causes the GoToolResizing.DoResizing method to be called while the 

mouse is dragging the selection handle. This method in turn calls the GoObject.DoResize 

method on the selected object. The object can then decide how to interpret the resize request. 

GoObject's default behavior in GoDiagram Win is to draw an XOR box during the resizing, and to 

set the object’s bounds when the resizing is done.  If the object’s ResizesRealtime property is 

true, the object’s bounds are set continuously as the mouse moves. 

A resize may change the aspect ratio of an object unless the CanReshape method returns false.  

Most objects have the AllowReshape property set to true, but GoImages have this property 

false by default. 

When the user holds down the SHIFT key during a resize, the resizing maintains the aspect ratio 

of the object, even if CanReshape returns true. 

Note that it is the GoObject.SelectionObject’s CanResize method that must return true for an 

object to be resizable.  The SelectionObject may be different from the selected object itself, 

particularly for groups that redirect selection handles to an object in the group. 

After the resize is complete, the tool raises a GoView.ObjectResized event. 

Linking 

Another important GoView feature is support for the user creating GoLinks between ports by 

"dragging" from a GoPort to another one.  The GoToolLinkingNew tool implements this feature.  

It becomes the view’s current tool when the user does a mouse drag from a port for which one 

or both of the IGoPort.CanLinkFrom and IGoPort.CanLinkTo methods return true. 

The GoToolLinking.CanStart predicate uses IsValidFromPort and IsValidToPort to see if the port 

under the mouse point will permit the user to start a new link. If so, the view creates two 



temporary ports located at that port and a temporary link between the temporary ports. While 

the user remains in this creating-a-new-link mode, one temporary port continuously moves to 

follow the mouse.  Because the other temporary port remains at the original port and because 

the link is redrawn as the port follows the mouse, the user sees the temporary link connecting 

the original port with where the mouse is. 

Furthermore the view checks the ports to which it could make a valid new link, by calling 

IsValidLink for all potential pairs of ports involving the original one. The default implementation 

of IsValidLink just asks the "from" port if it can be linked to the "to" port by calling 

IGoPort.IsValidLink; this allows the behavior to be overridden either in the port class or in the 

view’s tool.  

To make drawing links easier for the user, there is also the notion of "port gravity", a distance. 

The temporary port automatically snaps to the location of the closest valid port within the port 

gravity distance.  The GoView.PortGravity property has a default value of 100. 

Finally, when the user releases the mouse to create the link, the DoNewLink method is called. 

This method is responsible for creating the real IGoLink (that may be a GoLink or a 

GoLabeledLink, by copying the value of the GoView.NewLinkPrototype property) in the 

document’s links layer connecting the two ports.  The temporary ports and link are discarded.  

DoNewLink also raises the GoView.LinkCreated event. 

If for some reason the link is not made, because the attempted link was invalid or because the 

user cancelled the link drawing process, the DoNoNewLink method is called. This allows views 

to clean up any other state or inform the user or do some other default failure action. 

Rubber Banding 

When the user drags the mouse without starting on an object, i.e. in the background, the 

GoToolRubberBanding tool is used instead of GoToolDragging.  The normal behavior is to select 

objects with a rectangle, but you can easily override the behavior to do something else. 

 



GoDiagram 105 Copyright © Northwoods Software 

This simple tool just draws an XOR rectangle extending from the mouse down point to the 

current mouse point.  When the user releases the mouse, the DoRubberBand method selects all 

selectable top-level objects within the rectangle.  The selection is performed by 

GoView.SelectInRectangle. 

The GoToolZooming tool is very similar to GoToolRubberBanding, but instead changes the 

document position and scale of a view to correspond to the rectangular box that was drawn.  

This tool is not normally used by GoView, but it is used by GoOverview. 

Clipboard 

GoView supports copying the selection to and from the system clipboard; use the 

GoView.EditCopy, GoView.EditCut, and GoView.EditPaste methods. These methods depend on 

the document's CopyFromCollection method and use GoDocument.DataFormat as the data 

format. 

EditCopy and EditCut use the GoView.CopyToClipboard method to make a new instance of the 

view’s document and copy in the collection of objects.   

Similarly, EditPaste uses the GoView.PasteFromClipboard method to get the 

GoDocument.DataFormat data object from the system clipboard and copy its objects into the 

view’s document. 

You may wish to override the GoView.CopyToClipboard and GoView.PasteFromClipboard 

methods to handle additional data formats or to avoid using the GoDocument format. 

The GoView.CanEditCopy, GoView.CanEditCut, and GoView.CanEditPaste predicates can be 

used to determine if their corresponding Edit… methods can be called, and thus to 

enable/disable parts of the user interface. 

In-place Editing 

Another handy feature that GoView offers is in-place text editing.  Note that this interactive 

feature only applies to Windows Forms. 

If a GoText object is editable, then clicking on it may put it into editing mode, where the user 

can change the string. This is accomplished by creating a temporary GoControl object in this 

view and having it be responsible for actually creating and displaying a TextBox and handling its 

editing completion or cancellation. The GoControl object is held as the EditControl property of 

the view. 



 

The GoView.EditObject method starts to edit any given object by calling GoObject.DoBeginEdit, 

assuming the view’s CanEditObjects method returns true and the object’s CanEdit method 

returns true.  For the GoText class, GoText.DoBeginEdit does what is described in the previous 

paragraph. 

Use GoView.DoEndEdit to stop any in-place editing in progress—this just calls 

GoControl.DoEndEdit on the view’s EditControl, and then sets GoView.EditControl to 

nothing/null.  In the GoText class, DoEndEdit raises a GoView.ObjectEdited event. 

The GoView.EditEdit and GoView.CanEditEdit methods are similar to GoView.EditCut, 

GoView.EditCopy, GoView.EditPaste, and other GoView Edit… methods in providing easy-to-

use methods for implementing and enabling user-interface commands.  GoView.EditEdit just 

calls GoView.EditObject on the primary selection in order to get the work done. 

Keyboard Commands 

A view can accept keyboard focus and can respond to several keyboard commands by default. 

You can control whether there is any default key event handling by setting the AllowKey 

property, which defaults to true.  You can also disable certain subsets of keys, by their 

functionality, by setting the GoView.DisableKeys property. 

Normally, keyboard input is passed to the current tool by setting up a GoInputEventArgs and 

calling the tool’s DoKeyDown method.  All of the predefined tools interpret the ESCAPE key as a 

signal to stop the current tool.  In this case, DoKeyDown just calls DoCancelMouse when the 

last input’s key is ESCAPE, and DoCancelMouse just reset’s the view’s current Tool to the 

DefaultTool. 

The normal default tool, GoToolManager, interprets additional keyboard commands as well. 

 

Key GoView.DisableKeys Action 

ESCAPE  GoTool.DoCancelMouse 

DELETE Delete GoView.EditDelete 

CTRL-A SelectAll GoView.SelectAll 



GoDiagram 107 Copyright © Northwoods Software 

CTRL-C Clipboard GoView.EditCopy 

CTRL-X Clipboard GoView.EditCut 

CTRL-V Clipboard GoView.EditPaste 

F2 Edit GoView.EditEdit 

HOME Home GoView.DocPosition set to show the left 

edge of the document, top-left corner if CTRL 

END End GoView.DocPosition set to show right edge 

of document, bottom-right corner if CTRL 

PAGE-DOWN Page Scroll the view down by large increment, 

horizontally if SHIFT 

PAGE-UP Page Scroll the view up by large increment, 

horizontally if SHIFT 

CTRL-Z Undo GoView.Undo 

CTRL-Y Undo GoView.Redo 

letter or digit SelectsByFirstChar GoView.SelectNextNode 

Arrow keys ArrowMove Move the selection in the given direction, one 

pixel at a time if CTRL 

Arrow keys ArrowScroll Scroll the view in the given direction, one pixel at 

a time if CTRL 

 

It is customary to use the F4 key to display a properties dialog or grid for the currently selected 

object (the primary selection).  GoView and GoToolManager do not implement this because this 

functionality is much too application-specific.  For GoDiagram Win, look at the ProtoApp sample 

for how you can use either a modal dialog or a properties grid for editing the properties of the 

current selection.   

 

VB.NET: 

Protected Overrides Function IsInputKey(ByVal k As Keys) As Boolean 

  If k = Keys.Down Or k = Keys.Up Or k = Keys.Left Or k = Keys.Right  

    Then 

      Return True 

    End If 

    Return MyBase.IsInputKey(k) 



  End Function 

 

C#: 

     

 protected override bool IsInputKey(Keys k) { 

    if (k == Keys.Down || k == Keys.Up || 

        k == Keys.Left || k == Keys.Right) 

      return true; 

    return base.IsInputKey(k); 

  } 

 



GoDiagram 109 Copyright © Northwoods Software 

6. NODES 

As noted previously, sets of Go primitive objects can be combined into higher-level grouped 

objects.  One of the most common applications of this technique is in creating a “node” for a 

diagram, a node being a group with at least one port. 

Ideally each application will want highly customized nodes.  To get you started, Go provides a 

number of predefined node classes that have been shown to be useful in various kinds of 

applications.  If they are not exactly what you are looking for, derive new classes from them to 

get exactly the appearance and behavior you seek. 

Pictures of these objects are shown below with the descriptions. 

• GoBasicNode, an elliptical or rectangular node with one port in the middle and an 

optional label 

• GoIconicNode, the simplest node with an image and a text label and a single port 

• GoTextNode, a node with four ports, one at each side and top and bottom, that 

displays some text with a background shape 

• GoMultiTextNode, a node containing a list of objects (normally text) that has a port 

on each side of each list item and ports at the top and at the bottom 

• GoBoxNode, a node containing an object, with a single port that is smart about 

connecting links to the closest side 

• GoSimpleNode, a node with two ports, an icon, and a label 

• GoGeneralNode, a node with any number of labeled ports on either side, an icon, 

and labels on the top and/or bottom 

• GoSubGraph, a labeled node that contains a smaller diagram of individually 

selectable and movable nodes and links, that the user can collapse or expand in 

place 

• GoComment, a group with no ports that displays some text 



• GoBalloon, a balloon comment displaying text and pointing to an object 

• GoButton, a group that looks and acts like a button, but is much lighter-weight than 

a real Button Control 

• GoListGroup, a group that simply positions its children vertically or horizontally and 

provides a background, a border, and lines separating the children 

One way to distinguish the different kinds of nodes is to consider how many ports they support 

and whether they display an image. 

GoBasicNode, GoIconicNode, and GoBoxNode all are designed to have just one port.  The 

actual points at which links connect to the port are dynamically computed. 

GoTextNode is designed to have four ports.  Even though in some cases a GoTextNode may look 

like a GoBasicNode or a GoBoxNode, links will always be connected at a particular port, no 

matter the direction the link comes from.  Of course you can always remove one or more ports 

from a GoTextNode. 

GoSimpleNode, GoGeneralNode and GoMultiTextNode have ports lined up on two sides; 

GoSimpleNode just has one on each side.  You can vary the number of ports on a 

GoGeneralNode dynamically.  Links are assumed to come into one side and go out the other.  

Both GoSimpleNode and GoGeneralNode support the Orientation property, which controls 

whether the ports are on the left and right, or on the top and bottom.  The default is 

Orientation.Horizontal, so the ports are actually on the left and right. 

GoMultiTextNode uses a GoListGroup to hold its main items.  The number of ports in a 

GoMultiTextNode depends on the number of items; each item has a port on both sides, and 

there is one port at the top and one at the bottom. 

GoIconicNode, GoSimpleNode, and GoGeneralNode all display an Icon, which is typically an 

instance of GoImage.  The other nodes types do not, although some of them might contain 

images, such as GoMultiTextNode holding images instead of GoText objects. 

GoComment, GoBalloon, GoButton and GoListGroup are not really nodes because they do not 

implement IGoNode nor do they contain ports. 

GoBasicNode 

A GoBasicNode has a shape (typically an ellipse or rectangle), a label, and a single port at the 

center of the shape.  You can easily change the basic appearance of the node by setting its Pen 

and/or Brush properties, which just change those same properties on the GoShape.  You can 

also replace the shape. 



GoDiagram 111 Copyright © Northwoods Software 

 

The label is only created when you set the Text property—its location relative to the shape is 

determined by the LabelSpot property, which defaults to GoObject.MiddleTop, placing the label 

centered above the ellipse. 

 

The natural location for a GoBasicNode is at the center of the shape, rather than at the top-left 

corner.  Thus the location for a GoBasicNode is the same no matter where the label is. 

If you replace the Shape object, a number of its properties are automatically copied from the 

original Shape object to the new one.  These include the following properties of GoObject: 

Center, Selectable, Resizable, Reshapable, ResizesRealtime, and Shadowed. If you want to both 

replace the GoBasicNode.Shape and change any of these properties from the default, you will 

need to set the properties of the shape after setting the GoBasicNode.Shape property. 

An easy way to replace the shape is to use a GoDrawing by specifying a GoFigure as an 

argument to the constructor: 

       

GoBasicNode n = new GoBasicNode(GoFigure.ManualOperation); 

n.Text = "some\nprocedure"; 

n.Label.Multiline = true; 

doc.Add(n); 

 

Please note that although using a GoDrawing is convenient for specifying different kinds of 

shapes, it is less efficient in space and rendering time than using a GoEllipse or a GoRectangle. 

The link point for links at a GoBasicNode will be on the edge of the shape where the stroke of 

the link to the center of the shape intersects the shape. 

Because there is no clearly indicated direction for links at the only port, you may want to use 

arrowheads on the links to indicate the direction of each link.  One way of achieving the effect 



that links pointing at GoBasicNodes have arrowheads, is to notice whenever a link gets added to 

the document: 

 

    doc.Changed += new GoChangedEventHandler(this.myDoc_Changed); 

 

    protected void myDoc_Changed(Object sender, 

                                 GoChangedEventArgs evt) { 

      if (evt.Hint == GoLayer.InsertedObject && 

        evt.GoObject is GoLabeledLink) { 

        GoLabeledLink l = (GoLabeledLink)evt.GoObject; 

        if (l.ToPort != null && 

            l.ToPort.Node is GoBasicNode) 

          l.RealLink.ToArrow = true; 

      } 

    } 

Instead of adding a document Changed event handler, an alternate (equivalent) way to get 

notification of events from a GoDocument is to create a subclass of GoView and override the 

OnDocumentChanged method, which is GoView’s event handler for document changes. 

If you just want to check when the user draws a link, rather than when in all cases programmatic 

code creates a link and adds it to a document, you can instead add a GoView.LinkCreated event 

handler.  Again, if you are inheriting from GoView, you could do the same thing by overriding 

GoView.OnLinkCreated if you wish to change the already created link, or by overriding 

GoView.CreateLink to control how the link is created: 

 

    public override virtual CreateLink(IGoPort from, IGoPort to) { 

      GoLabeledLink l = new GoLabeledLink(); 

      l.FromPort = from; 

      l.ToPort = to; 

      if (to.Node is GoBasicNode) 

        l.RealLink.ToArrow = true; 

      this.Document.LinksLayer.Add(l); 

      return l; 

    } 

There is a special appearance for GoBasicNode when the LabelSpot is Middle.  Then the label is 

indeed positioned at the center of the ellipse.  But the ellipse is automatically resized to fit the 

text.  You can control how much space there is around the text by setting the 

MiddleLabelMargin property. 



GoDiagram 113 Copyright © Northwoods Software 

If you want the node’s Shape to remain at a fixed size, even when the text changes, you can set 

the AutoResizes property to false (the default is true). 

The port, which would normally be visible at the center, becomes transparent and sized as large 

as the ellipse.  Users can then start drawing a link from such a GoBasicNode with a mouse press 

and drag along the edge of the ellipse. 

 

A GoBasicNode with the label in the middle is very similar looking to a GoTextNode with the 

same kind of shape as its background shape.  However, the GoBasicNode only has one large 

port; the GoTextNode has up to four small ports—one on each side. 

GoIconicNode 

A GoIconicNode is the simplest node that has an icon.  It has a text Label and a single small Port.  

The port is centered on the icon. 

 

A GoIconicNode is convenient to use when there are simple relationships between the nodes 

and you only expect to create links programmatically.   However, by default the user can draw 

new links starting at the Port. 

The Icon can be any kind of GoObject, but is normally an instance of GoImage.  After 

constructing a GoIconicNode you should call the Initialize method to specify the image from a 

ResourceManager or file.  For Windows Forms, there is an overloaded Initialize method that 

takes an ImageList.  Finally, if you call the Initialize method with both a null value for the 

ResourceManager and a null value for the Name, the Initialize method will allocate a 

GoDrawing instead of a GoImage.  You can then set the GoIconicNode.Figure property as well 

as initialize any other properties of the GoIconicNode.Shape, such as its Size or BrushColor. 

The above iconic nodes were constructed using the following code: 

      GoIconicNode n = new GoIconicNode(); 

      n.Initialize(null, "star.gif", "star"); 

      doc.Add(n); 



That assumes that there is a GoImage.DefaultResourceManager defined that contains a 

“star.gif”. 

You can also make use of the various predefined GoFigures: 

GoIconicNode n = new GoIconicNode(); 

n.Initialize(null, null, "drawing"); 

n.Figure = GoFigure.FireHazard; 

n.Shape.BrushColor = Color.Red; 

n.Shape.BrushForeColor = Color.Orange; 

n.Shape.BrushStyle = GoBrushStyle.SimpleGradientVertical; 

n.Shape.Resizable = false; 

doc.Add(n); 

This produces the following result: 

 

The label is normally positioned below the icon.  If you turn on the DraggableLabel property, 

users will be able to move the label freely relative to the icon.  This is handy when the user 

wants to avoid visual conflicts between the label and the node’s links.  You can also set the 

LabelOffset property programmatically. 

The MultiPortNode example class in the NodeLinkDemo example inherits from GoIconicNode to 

provide an arbitrary number of ports at arbitrary positions on the icon. 

GoTextNode 

A GoTextNode is a relatively simple node class that displays text inside a rectangle with a port 

on each side of the rectangle.  It is structurally similar to a GoComment except that it also has 

four ports, TopPort, RightPort, BottomPort, and LeftPort that are positioned at the middle of 

the edges of the node. 

 

When the text string is changed, it automatically resizes the rectangle and moves the ports 

appropriately.  The text supports multiple lines.  By default it is not Editable, but by changing 



GoDiagram 115 Copyright © Northwoods Software 

that property on the text label the Windows Forms user can single-click on a TextNode and start 

editing the text string.  If the whole node is Editable and selected, then by default the user’s F2 

key will start editing the text label. 

If you want the node’s Background object to remain at a fixed size, even when the text changes, 

you can set the AutoResizes property to false (the default is true). 

Because GoNode implements the IGoLabeledNode interface, the node’s Label property is 

overridden to return the GoText used to display the text, and thus the node’s Text property is 

the label’s text string. 

By default the background is an instance of GoRectangle and is the value of the Background 

property.  However, you may use other kinds of GoObjects as the background for the text—

using GoRoundedRectangle is common.  You can either set the Background property explicitly, 

or you can override the CreateBackground method.  If you override CreateBackground, you 

might do something like: 

 

public override GoObject CreateBackground() { 

  GoRoundedRectangle r = new GoRoundedRectangle(); 

  r.Selectable = false; 

  r.PenColor = Color.Blue; 

  r.BrushColor = Color.LightBlue; 

  r.Shadowed = true; 

  return r; 

} 

Depending on the shape of the background object, you may need to adjust the TopLeftMargin 

and BottomRightMargin properties to leave enough space for the text. 

Another way to replace the Background shape is to use the GoTextNode constructor that takes 

a GoFigure as an argument.  The Background is allocated as a new GoDrawing showing that 

Figure.  For example: 

    

GoTextNode n = new GoTextNode(GoFigure.Database); 

n.Text = "\nsome database operation"; 

n.Label.Alignment = GoObject.Middle; 

n.Label.Wrapping = true; 

n.Label.WrappingWidth = 100; 

doc.Add(n); 

Produces the following kind of node: 



 

Unlike many other instances of ports, the ports on a GoTextNode are of GoPortStyle.None, so 

they have no appearance yet behave normally.  You can remove ones you don’t need by setting 

the corresponding property to nothing/null.  You can disable them individually from letting users 

draw links to or from them by setting their IsValidFrom and/or IsValidTo properties to false.  Or 

you can disable all linking by setting the AllowsLink property to false on the document or the 

view. 

GoMultiTextNode 

A GoMultiTextNode is useful when you wish to display a number of text items in a list, each 

with associated ports. 

 

It is easy to add strings to the list—just call the AddString method.  By default this will create a 

GoText that is not Selectable, is middle-aligned, supports multiple lines and text wrapping, and 

has the DragsNode property set to true. 

This class uses an instance of the GoListGroup class to layout the items and draw a background, 

separator lines, and a border.  But it also maintains an array of ports for the left side, an array of 

ports for the right side, the top port, and the bottom port.  If you are navigating a graph and 



GoDiagram 117 Copyright © Northwoods Software 

come to a port that is part of a GoMultiTextNode, you can find the port’s associated item by 

calling GoMultiTextNode.FindPortIndex to return the zero-based item index. 

Furthermore a GoMultiTextNode has its own notion of a how wide each item should be.  The 

ItemWidth property, when positive, determines not only the width of newly created text items 

but their WrappingWidth too. 

The RecordNode and ObjectNode classes are examples of how GoMultiTextNode can be 

customized for particular applications. 

GoBoxNode 

A GoBoxNode is also a relatively simple node, like GoBasicNode.  It has a single port that is 

slightly larger than but centered behind the object (the Body property) that it displays.  The 

body defaults to an instance of GoText, but you can easily set it to be any GoObject.  The 

NodeLinkDemo sample puts three text objects in the box by using a GoListGroup to hold the 

GoText objects and then setting the Body to be that group.  If you intend to create many box 

nodes, you may find it wise to override the CreateBody method that is called by the constructor, 

to initialize and return the kind of object you would like to put in the box. 

But the GoBoxNodePort is different from most ports because the link connection point and 

direction are determined dynamically according to the position of the port at the other end of 

the link.  The connection point is always on the side closest to the link’s other node, and it is 

always directed outward perpendicular to the port’s side. 

 

By default the link point is always in the middle of the closest side.  However, by setting the 

GoBoxNode.LinkPointsSpread property to true, the links points will be spread evenly along each 

side. 



 

When the links are Orthogonal, the link points may be different: 

 

The InfoNode example classes in the NodeLinkDemo sample demonstrate one way to create 

nodes having various objects within a GoGroup that is the GoBoxNode’s Body. 

GoSimpleNode 

A GoSimpleNode has an icon, an editable label, and two ports for “input” and “output”.  It 

differs from a GoTextNode because the icon is the central object; for GoTextNode, the text is 

the central object. 



GoDiagram 119 Copyright © Northwoods Software 

 

The resize behavior for GoSimpleNodes is that only the icon is resized.  The Icon, in fact, is the 

node’s SelectionObject.  Furthermore, any resizing of the icon keeps the original aspect ratio of 

the icon, so that the icon does not appear distorted due to being stretched out sideways or up-

and-down.  The icon is normally a GoImage, in fact an instance of GoNodeIcon, which 

cooperates with this node to provide minimum and maximum icon size limits during resizing. 

You can create a GoSimpleNode by allocating it and then calling Initialize.  The choice of 

overloaded Initialize methods determines if the icon is an image taken from an ImageList, from 

a ResourceManager, or from a disk file.  If you pass both a null value for the ResourceManager 

argument and a null value for the Name argument, the Initialize method will allocate a 

GoDrawing instead of a GoImage.  You can then set the properties of this GoDrawing by setting 

the Figure property and by setting other GoShape properties. 

The above GoSimpleNodes were created by: 

       

GoSimpleNode sn = new GoSimpleNode(); 

sn.Initialize(null, "star.gif", "simple node"); 

doc.Add(sn); 

That assumes that there is a GoImage.DefaultResourceManager defined that contains a 

“star.gif”. 

You can also make use of the various predefined GoFigures: 

GoSimpleNode sn = new GoSimpleNode(); 

sn.Initialize(null, null, "label"); 

sn.Figure = GoFigure.Pentagon; 

sn.Icon.Size = new SizeF(40, 40); 

sn.Icon.Resizable = false; 

sn.Shape.FillShapeGradient(Color.Orange); 

sn.InPort.Style = GoPortStyle.Diamond; 

sn.InPort.Pen = null; 

sn.InPort.BrushColor = Color.Green; 

sn.OutPort.Style = GoPortStyle.Diamond; 

sn.OutPort.Pen = null; 

sn.OutPort.BrushColor = Color.Green; 

doc.Add(sn); 

This results in a node appearing as: 



 

One way of changing the appearance of the node is to change its icon.  If the image comes from 

an ImageList [Windows Forms only], you can set the index as follows: 

aSimpleNode.Image.Index = 23 

If the image comes from a ResourceManager or file: 

aSimpleNode.Image.Name = “special.gif” 

If the appearance comes from a GoDrawing, you can just set the GoSimpleNode.Figure 

property: 

aSimpleNode.Figure = GoFigure.EightPointedBurst 

Initializing a GoSimpleNode automatically creates the needed ports, and a label if the node 

name is not nothing (i.e., not a null reference). 

You can easily change the appearance of a particular port by creating a single instance of the 

desired GoObject and then setting the PortObject (if the style is GoPortStyle.Object). 

 

    private static GoImage myStar = null; 

 

    public static GoImage GetStar() { 

      if (myStar == null) { 

        myStar = new GoImage(); 

        myStar.Name = “star.gif”; 

      } 

      return myStar; 

    } 

 

    . . . 

      // assume aSimpleNode.InputPort.Style == GoPortStyle.Object 

      if (. . .)  // want to change the port’s appearance 

        aSimpleNode.InputPort.PortObject = GetStar(); 

    . . . 

You can also change the size of each port individually: 

aSimpleNode.InputPort.Size = new SizeF(10, 10) 

By setting the Orientation property to Orientation.Vertical, the InputPort is positioned on top 

of the node, the OutputPort is positioned on the bottom, and the Label is positioned on the 

right side of the node. 



GoDiagram 121 Copyright © Northwoods Software 

 

The GraphNode example class used by the ProtoApp sample demonstrates keeping its label’s 

text string unique within its document and adding a context menu command for editing the 

node’s properties. 

GoGeneralNode 

A GoGeneralNode is similar to a GoSimpleNode, but with the following additional features: 

• It supports a variable number of ports on each side. 

• Each of those ports can have its own label, displaying the name of the port. 

• There can be two labels for the whole node, on the top and on the bottom. 

 

The Image or Icon properties are just like those of GoSimpleNode, regarding how they are 

initialized and how you can change their appearance. 

Also like GoSimpleNode, you can set the Orientation property to Orientation.Vertical to switch 

the positions of the ports and the labels: 

 

Note that the LeftPorts are now on the top of the node, the RightPorts are on the bottom of the 

node, the TopLabel is now on the left side, and the BottomLabel is now on the right side. 

You can control whether the port labels are on the outside or on the inside of the ports by 

setting the LeftPortLabelsInside and RightPortLabelsInside properties.  Here’s a 

GoGeneralNode with the default settings, with the labels inside, and also with Orientation set 

to Vertical: 



 

You can control how far the port labels are from their ports by setting the LeftPortsLabelSpacing 

and RightPortsLabelSpacing properties. 

You can control how the ports are positioned relative to the edge of the Icon by setting the 

LeftPortsAlignment and RightPortsAlignment properties. 

For example, the following code: 

GoGeneralNode gn = new GoGeneralNode(); 

gn.Initialize(null, null, "top", "bottom", 4, 2); 

gn.Figure = GoFigure.ManualOperation; 

gn.Shape.Width = 50; 

gn.Shape.FillSimpleGradient(Color.Orange); 

doc.Add(gn); 

combined with setting Orientation to either Orientation.Horizontal or Orientation.Vertical, and 

LeftPortsAlignment and RightPortsAlignment to GoObject.TopLeft, Middle, or BottomRight, 

results in nodes that appear as: 

 

The ColoredNode example class, in the NodeLinkDemo subdirectory, uses a colored 

GoRoundedRectangle instead of a GoImage as the Icon, and uses ports that have a 

GoPortStyle.Rectangle style with different Brush colors. 

The LimitedNode example class, in the NodeLinkDemo subdirectory, also demonstrates using 

context menu commands to add and remove ports from a node. 

The SequencedNode example class, also in the NodeLinkDemo subdirectory, demonstrates how 

to extend a GoGeneralNode by adding a port at the top and a port at the bottom. 



GoDiagram 123 Copyright © Northwoods Software 

The AutoLinkNode example class, also in the NodeLinkDemo subdirectory, demonstrates a node 

with a special port in the middle of the icon.  When the user links to that port, the appropriate 

left or right side port is added to the node and the link is completed to that new port.  

Furthermore, removing the last link from such side ports will automatically remove that port 

from the node. 

GoSubGraph 

Sometimes you have additional information associated with a node that is graphical in nature.  

One method of displaying such graphs is in a separate MDI child window.  Typically, a double-

click on the node should accomplish a drill-down by opening the detail window.  The application 

would need to keep a hash table mapping nodes to MDI child windows, so that repeated 

double-clicks are able to restore and activate any existing window. 

But there are times when you want to show the subgraph as part of the overall diagram.  One 

way of doing this is to use the GoSubGraph class.  This node allows its children to be individually 

selected and moved.  Users can link nodes within a subgraph or between subgraph nodes and 

top-level nodes.  As child nodes are moved, the subgraph does not move as a whole, but its 

Bounds are adjusted to include all of the children. 

 

Each GoSubGraph has its own BackgroundColor and Opacity so that the boundaries of each 

subgraph are clear.  There is also a BorderPen to provide an outline for the node’s region, as 

shown by the “inner” subgraph above.  The Corner property rounds off the four corners of the 

background.  The TopLeftMargin and BottomRightMargin properties reserve extra space 

around the subgraph children.  If you set the GoObject.Resizable property, the user will be able 

to adjust the margins interactively.  The GoObject.Shadowed property also applies to the 

background. 



The PickableBackground property controls whether a user’s mouse press in the background of 

the subgraph will select the subgraph. 

A GoSubGraph displays a text Label to help identify or describe the subgraph.  You can specify 

the relative position of the label with the LabelSpot property.  By default the GoSubGraph 

constructor calls CreateLabel to produce a GoText label that is placed at the MiddleTop spot. 

A GoSubGraph has a handle that allows users to collapse or expand the subgraph with a click, 

just as they can with a node in a TreeView.  The handle can also be used to move or copy the 

subgraph.  A Control-click on a handle whose subgraph is collapsed will recursively expand any 

embedded subgraphs.  Collapsing a subgraph makes all of the children invisible except the label.  

A collapsed subgraph will be large enough to hold the largest child along with the label. 

Each GoSubGraph has a Port property that is normally used for connections to the node as a 

whole, rather than to any child node.  However, by default there is no Port; you will need to set 

this property yourself, or override CreatePort, which is called during construction. 

Collapsed subgraphs 

When a subgraph is collapsed, it is typically a relatively small node.  The subgraph children are 

made to be not GoObject.Visible and are recentered near the Handle.  The Label remains visible 

and is also centered in the collapsed node. 

Its appearance can easily be customized using several GoSubGraph properties: 

CollapsedTopLeftMargin, CollapsedBottomRightMargin, CollapsedCorner, CollapsedObject, 

and CollapsedLabelSpot.  The margin and corner properties are just like the non-“Collapsed” 

properties.  CollapsedObject though is a replacement object that you can specify that is made 

Visible when the subgraph is collapsed.  When there is a CollapsedObject (but by default this 

property is null/nothing), the CollapsedLabelSpot controls the position of the Label relative to 

the CollapsedObject.  The CollapsedObject is made not Visible during an Expand. 

Links in subgraphs 

When the user moves or copies an object into the region of a GoSubGraph, it is not added to 

the subgraph group.  You will need to implement your own policies and mechanisms for 

deciding when and how to add objects to subgraphs.  The SubGraphApp sample provides an 

example implementation. 

However, links are automatically added to subgraphs.  When the user draws a link, 

GoView.CreateLink is called to construct a new link and add it to the document.  The normal 

behavior is to see if both FromPort and ToPort belong to GoSubGraphs.  If they do, the link is 



GoDiagram 125 Copyright © Northwoods Software 

added to the GoSubGraph that contains both ports.  If no such subgraph exists, the link is added 

to the GoDocument.LinksLayer, as a regular top-level object. 

Links should be added to the first common parent of both end ports so that copying and 

autolayout of subgraphs works correctly.  This is an exception to the convention that links 

should be added to the document’s LinksLayer.  The static 

GoSubGraph.ReparentToCommonSubGraph method will do this for you. 

When you use the regular GoNode enumerators for iterating over the links (or ports or 

connected nodes) you will notice that it will include all of the links that are internal to the 

subgraph.  You can simplify your programming by using the “External”-named enumerators, 

such as using ExternalSources to iterate over all of the IGoNodes that are source nodes to the 

subgraph. 

Customizing Collapse and Expand 

You can programmatically collapse or expand a subgraph by calling the GoSubGraph.Collapse or 

GoSubGraph.Expand methods.  These methods are called when the user clicks on a 

GoSubGraphHandle.  Both Collapse and Expand call a number of protected virtual methods that 

you can override in order to change the appearance and behavior of GoSubGraph. 

Some examples are provided by the subclasses defined in the SubGraphApp sample.  

CustomSubGraph defines a fixed-size collapsed node.  It also overrides LayoutPort so that the 

Port has the same Bounds as the whole subgraph, rather than just being at the Handle.  The 

Port itself uses a GoBoxPort to make connections “smarter” about where and how they connect 

at the port.  MultiPortSubGraph customizes the margins to hold a variable number of ports 

(rather than having a single Port) and to allow the user to pick the MultiPortSubGraph by 

clicking or grabbing the thick margin.  The appearance of each MultiPortSubGraphPort is 

implemented using shared GoHexagons as the GoPort.PortObjects. 

Further variations are provided commented-out in the example source code, such as keeping 

the Handle positioned at the far top-left corner of the subgraph (overlapping the margin), 

creating a CollapsedObject using a GoImage, and making the Label not Visible during a 

Collapse. 

Collapse performs a number of steps that allow for customization.  It may be easiest to present 

a (simplified) definition: 

 

  public virtual void Collapse() { 

    if (this.State != GoSubGraphState.Expanded) return; 

    if (!this.Collapsible) return; 

    this.State = GoSubGraphState.Collapsing; 



    this.Initializing = true; 

    PrepareCollapse(); 

    // figure out how big the bounds will be, assuming any 

    // nested subgraphs are collapsed, ignoring any collapsed margin 

    SizeF maxsize = ComputeCollapsedSize(true); 

    // ComputeCollapsedRectangle calls ComputeReferencePoint 

    RectangleF cr = ComputeCollapsedRectangle(maxsize); 

    foreach (GoObject obj in this) { 

      SaveChildBounds(obj, cr); 

    } 

    foreach (GoObject obj in this) { 

      CollapseChild(obj, cr); 

    } 

    FinishCollapse(cr); 

    this.Initializing = false; 

    this.State = GoSubGraphState.Collapsed; 

    // make sure Handle, Port, Label are positioned correctly again 

    LayoutChildren(null); 

    this.InvalidBounds = true; 

  } 

 

And here is a simplified definition of Expand: 

 

  public virtual void Expand() { 

    if (this.State != GoSubGraphState.Collapsed) return; 

    if (!this.Collapsible) return; 

    this.State = GoSubGraphState.Expanding; 

    this.Initializing = true; 

    PrepareExpand(); 

    PointF hpos = ComputeReferencePoint(); 

    // expand nodes (and other children), then links 

    foreach (GoObject obj in this) { 

      if (!(obj is IGoLink)) { 

        ExpandChild(obj, hpos); 

      } 

    } 

    foreach (GoObject obj in this) { 

      if (obj is IGoLink) { 

        ExpandChild(obj, hpos); 

      } 

    } 

    FinishExpand(hpos); 



GoDiagram 127 Copyright © Northwoods Software 

    this.Initializing = false; 

    this.State = GoSubGraphState.Expanded; 

    // make sure Handle, Port, Label are positioned correctly again 

    LayoutChildren(null); 

    this.InvalidBounds = true; 

  } 

GoCollapsibleHandle 

You can easily implement your own classes that collapse and expand like a GoSubGraph, but 

that have other features.  The TreeAppNode example class in the TreeApp sample demonstrates 

using a GoCollapsibleHandle for a completely different purpose than the GoSubGraphHandle of 

a GoSubGraph. 

 

The technique is to add a GoCollapsibleHandle to your node or group that also implements the 

IGoCollapsible interface.  The GoCollapsibleHandle object overrides GoObject.OnSingleClick to 

handle user’s clicks to call its parent’s IGoCollapsible.Expand and IGoCollapsible.Collapse 

methods. 

Another example of using GoCollapsibleHandle is the CollapsibleListGroup example class.  This 

group contains two GoListGroups plus a GoCollapsibleHandle that controls the visibility of the 

two groups—one is Visible when the other one is not Visible. 

GoCollapsibleHandle inherits from GoRoundedRectangle, so that you can set the Pen and the 

Brush and the Corner of the handle.  But you can also specify the Style property to customize 

the internal appearance: values include:  GoCollapsibleHandleStyle.PlusMinus, TriangleRight, 

TriangleUp, and ChevronUp. 

GoSubGraphBase 

GoSubGraph implements a particular model or style of grouping together a subset of a graph as 

a single node.  It supports expanding and collapsing (including having a Handle and a 



CollapsedObject), implements its own notions of a Label and a Port, and has its own 

conventions regarding margins and resizing. 

However, you may want to implement your own “graph-container” nodes.  Perhaps you don’t 

like how GoSubGraph implements collapse and expand and overriding its methods is insufficient 

or too complicated for your application.  You can do so by inheriting from the GoSubGraphBase 

class.  This class (which inherits from GoNode) provides support for the additional graph 

traversal properties and methods that are specific to subgraphs.  Inheriting from 

GoSubGraphBase will also make sure newly drawn and reconnected links are automatically 

reparented so that  each link will be a child of the appropriate GoSubGraphBase. 

GoComment 

A GoComment is a very simple GoGroup that just has a text object with a background object.  As 

the size of the text changes, the bounds of the comment adjust appropriately. 

 

The Background shape and TopRightMargin and BottomRightMargin properties are similar to 

those of a GoTextNode. 

With Windows Forms there are two different predefined ways for users to start editing the text 

in-place.  If GoComment.Label.Editable is true, a single-click will begin the in-place edit.  If 

GoComment.Editable is true, an F2 key will begin the in-place edit of the selected comment.  Of 

course, if you set both properties to false, the user will not be able to edit the text at all, unless 

you provide alternative mechanisms. 

GoBalloon 

A GoBalloon is a fancier GoComment that is associated with an object and points to that object. 

  



GoDiagram 129 Copyright © Northwoods Software 

The Anchor property is the object that the balloon comment is about.  Either the balloon 

comment or the anchor object can move independently. 

The BaseWidth property controls how wide the base of the triangle is near the text label. 

When the Reanchorable property is true and the balloon is selected, there is a special handle 

place at the point of the balloon, near the anchor object.  Users can then change the balloon’s 

Anchor property by dragging to another object.  You can override the PickNewAnchor method 

to control what kinds of objects that are permitted to be new anchors, and whether the balloon 

can have no object as an anchor. 

When the Anchor property is null/nothing, the point of the balloon is specified by the 

UnanchoredOffset property. 

Your application code needs to decide what to do when the user deletes the object that is the 

anchor of a balloon.  You might want to delete the comment, or you might keep the default 

behavior, which is to make the balloon unanchored. 

GoButton 

A GoButton has the appearance of a regular button.  However, it is implemented as a GoGroup, 

containing a GoText label, a GoImage icon, and a GoRectangle background drawn with a 

simulated 3D border. 

 

Unlike other GoObject classes, GoButton supports an event, the Action event, which is raised 

when the user does a mouse-down and a mouse-up within the button. 

    . . . 

      aButton += new GoInputEventHandler(aButton_Pressed); 

    . . . 

 

    void aButton_Pressed(Object sender, GoInputEventArgs e) { 

      String msg = "clicked on a GoButton"; 

      if (sender is GoButton) { 

        msg += " labeled: "; 

        msg += ((GoButton)sender).Text; 

      } 

      MessageBox.Show(msg); 

    } 



GoButton implements the IGoActionObject interface to get mouse down, mouse move, and 

mouse up events from the GoToolAction tool without interfering with the standard mouse 

dragging and linking behaviors. 

You can also disable a button by setting its IGoActionObject.ActionEnabled property to false. 

Example Nodes 

Other potentially useful node examples are provided in the sample directories, including: 

• ClassNode, a GoTextNode that displays a type’s name, properties and methods (in 

the Classier sample)  

 

• PersonNode, a GoTextNode that displays a person’s name (in the FamilyTree 

sample) 

 

• GraphNode, a GoSimpleNode that has customized ports, context menu commands, 

and a unique label when added to a document (in the NodeLinkDemo sample) 

 

• LitIconicNode, a GoIconicNode that paints a highlight behind and around its Icon.  In 

the NodeLinkDemo sample, the example class has implemented a 

GoObject.OnEnterLeave override to turn on the highlight when the mouse is over 

the node.  In the following screen shot, the mouse is actually over “Lit 1”. 

 



GoDiagram 131 Copyright © Northwoods Software 

• ColoredNode, a class in the NodeLinkDemo sample inheriting from GoGeneralNode 

that uses a colored GoRoundedRectangle instead of GoImage as the Icon, and 

whose ports are colored rectangles.  Note that the default Orientation is 

Orientation.Vertical. Furthermore there is an additional label that is positioned in 

the middle of the icon.  The standard two labels that GoGeneralNode provides are 

still available for use on either side of the node. 

   
The ports do not have labels, but they do have names.  The user can see these 

names in tooltips when the user hovers the mouse over the ports. The colors of the 

ports are chosen at random in this example class, but you may want to modify the 

code to assign particular colors and/or port styles to help visually identify the 

individual ports. 

• LimitedNode, a GoGeneralNode whose location is limited to a certain range in the X 

dimension, that has context menu commands for adding and removing ports, whose 

ports are limited to at most three links, and whose ports change color according to 

how many links are connected (in the NodeLinkDemo sample)  

 

• AutoLinkNode, a GoGeneralNode with a special auto-linking port that automatically 

creates new ports as the user tries to link to it (in the NodeLinkDemo sample) 

  



• SequencedNode, a simple extension of GoGeneralNode to give it extra ports at the 

top and at the bottom (in the NodeLinkDemo sample) 

 

• MultiPortNode, a GoIconicNode extension that provides a variable number of ports 

at arbitrary positions on the icon.  The Label is also repositionable by the user (in 

the NodeLinkDemo sample) 

 

• MultiTextNodeWithBack, a GoMultiTextNode that has a separate Background 

object.  For example, when the object is a GoCylinder: 

 

However, any GoObject can be used, such as a GoImage.  This class is also yet 

another instructive example of how to add an object to a node class. 



GoDiagram 133 Copyright © Northwoods Software 

• ScrollingMultiTextNode is also a GoMultiTextNode, but demonstrates how to add a 

couple of GoButtons to control the ListGroup’s GoListGroup.TopIndex to get the 

items in the GoListGroup to scroll. 

 

There are actually 100 items in each of the above example nodes, but the first 

23 and last 70 are not Visible in the left node.  Item 6 in the left node is 

connected to item 6 of the right node; 23 to 11, and 26 to 26.  Each node can 

also be resized interactively, because the user actually resizes the 

GoMultiTextNode.ListGroup. 

In Windows Forms if the user holds down the mouse button on a scroll button, 

the items will autoscroll after a delay.  The user can increase the rate at which it 

autoscrolls by dragging the mouse vertically farther away from the button. 

• The InfoNode example class in the NodeLinkDemo sample demonstrate one way to 

create nodes having various objects within the GoGroup that is a GoBoxNode’s 

Body. 

The parts include GoText objects to display text strings, some GoShapes to provide 

background or informative colored shapes, and even a GoButton that can handle 

user clicks.  You can use GoListGroups to organize the various parts of each node 

and provide separator lines. 

Other InfoNode example classes demonstrate other ways of constructing more 

complex nodes. 



     

 

 

• RecordNode, a GoMultiTextNode whose items have a single port, a SidewaysPort 

that extends to both sides of each item.  Although the items are typically just 

GoText objects, the RecordItem class is provided so that an item can have an image 

associated with it. 



GoDiagram 135 Copyright © Northwoods Software 

      

• CollapsingRecordNode is a  more complicated and more sophisticated node that 

supports tree structure of its items by nesting CollapsingRecordNodeItemLists and 

by supporting indentation in each leaf CollapsingRecordNodeItem.  (The 

implementation does not use GoMultiTextNode at all.) 

 

• ClassDiagramNode provides a node with a single port that displays partitioned 

collapsible lists of items.  The whole node can also be collapsed, as shown with the 

chevron-style GoCollapsibleHandle that is located at the top-right corner of the 

node. 



 

• ObjectNode, another GoMultiTextNode that uses slightly different SidewaysPorts, 

to represent an in-memory object.  Some items are named references to other 

objects.  The final item can be a GoGroup of GoPorts with links representing 

memory references to other objects. 

        

• PinNode, a node that has four prominent ports on each side of a rectangle with a 

text label, connected by lines.  This class demonstrates a simple use of custom 

painting in the node—the Paint override draws two lines between the ports and the 

GoRectangle and GoText cover over the middle where the two lines intersect.  The 

GoText wraps, but if it doesn’t fit in the given space within the rectangle, the 

StringTrimming property specifies StringTrimming.EllipsisCharacter (but this 

feature is not available in .NET Compact Framework). 



GoDiagram 137 Copyright © Northwoods Software 

 

• LinkLabel, in the Processor sample, demonstrates how to customize a GoText class 

so that it can be dragged by the user and draw a line connecting the label with a 

spot on the link. 

 

 

Also you may want to look at other classes such as: 



• GraphLink, a labeled link with an arrowhead, whose middle label is initially a 

random number, and that has a context menu (in the NodeLinkDemo sample) 

 

• TubularRectangle, a GoRectangle subclass that implements a custom Paint method.  

Note that unlike a GoRoundedRectangle, the sides are never quite straight, because 

4 Bezier curves are used instead of 4 straight lines connected by 4 arcs. 

 

• RichText, a GoObject class that displays formatted text (in the NodeLinkDemo 

sample) 

 

 

• AndShape, OrShape, HouseShape, OctagonalStar as shapes in DrawDemo.  You can 

specify the direction for the first three shapes. 

 

• RectangleWithCheckBoxEditor, in NodeLinkDemo, demonstrates bringing up a 

CheckBox as an editor for an object, in this case a class inheriting from GoRectangle.  

The screenshot shows how it appears while the user is editing the object.  

Unchecking the checkbox and changing focus away from the checkbox would cause 

the object’s brush color to change. 



GoDiagram 139 Copyright © Northwoods Software 

 

• GradientColorLink, in NodeLinkDemo, makes use of a Pen that uses a linear gradient 

brush going from a color at one port to another color at the other port. 

 

• TwoColorLink, also in NodeLinkDemo, demonstrates customized drawing of the 

stroke of a link. 

 

• TriangleTextNode, also in NodeLinkDemo, demonstrates custom drawing in the 

Paint method of a node.  (See above for screenshot.) 

• Various GoGroups, such as the Rack and Shelf and Item classes in Planogrammer, 

demonstrate that not everything need be a “node”. 



 

For all of these examples, be sure to look at the source code for more descriptions and details. 

Example SubGraph Classes 

TreeSubGraph 

TreeSubGraph is a relatively simple example subclass of GoSubGraph that defines a minimal 

appearance for the node and defines a Port that is located at the Handle. 



GoDiagram 141 Copyright © Northwoods Software 

 

When the two inner nodes are collapsed, you see: 

 

Collapsing the outer node results in: 

 

In this last screenshot, the collapsed node is selected. 

CustomSubGraph 

CustomSubGraph defines a Port that is implemented by a GoBoxPort with the same bounds as 

the whole subgraph.  This ensures that links to or from the Port are always evenly spaced along 

the closer sides of the node. 

The Port itself has a Style of GoPortStyle.None, so that it is not seen. 



These example nodes also demonstrate moderately large values for the Corner and Margin 

properties, along with Shadowed being true. 

 

Links to the Port that come from within the subgraph are treated differently—the link direction 

is reversed, so that they connect directly from within the port, rather than having to go outside 

and turn around to point back inwards. 

The same graph, with the nodes collapsed: 

 

Although not shown in this screenshot because the labels are short strings, the 

CustomSubGraph has the ability to abbreviate the labels using ellipsis when they are collapsed 

so that collapsed nodes are always the same size. 

MultiPortSubGraph 

The MultiPortSubGraph class defines a collection of MultiPortSubGraphPorts that can be 

positioned along one of the sides of the whole node.  In this example, these ports are rendered 

using GoHexagons as the PortObjects, so that there are only four instances of GoHexagon that 

are shared by all MultiPortSubGraphPorts. 



GoDiagram 143 Copyright © Northwoods Software 

 

The same graph, with the nodes collapsed: 

 

Note how the ports remain visible and are repositioned evenly on each side. 

LimitingSubGraph 

Normally there are no restrictions on the movement of child objects within a GoSubGraph.  

However, the LimitingSubGraph example class in NodeLinkDemo demonstrates how a 

GoSubGraph can implement IGoDragSnapper that affects how drags and resizes can be 

restricted to stay within the current subgraph border. 

Furthermore each LimitingSubGraph contains two special markers that the user can drag 

around that are not limited by the snap-point behavior.  This allows the user to resize the 

subgraph freely. 



7. UNDO AND REDO 

Go makes it easy for programmers to build graphical applications that display relationships 

between objects and that allow users to change those relationships with little effort.  Because 

users can make massive changes so easily, a well-designed application should also allow users to 

reverse the consequences of unintended changes. 

Go provides built-in support for undo and redo of all operations that modify the state of a 

GoDocument, including any GoObject contained in a document.  This support comes primarly 

by a GoUndoManager that is associated with a document that implements support for undo 

and redo. 

GoUndoManager provides several methods that your user-interface commands can call.  Two 

methods actually perform changes: Undo and Redo.  Two predicates determine whether these 

operations can be performed: CanUndo and CanRedo.  For convenience, these methods are also 

implemented on GoDocument, delegating to the document’s undo manager.  And they are 

implemented on GoView, delegating to the view’s document. 

Go’s built-in support for undo and redo only operates on the state that it knows about.  If you 

subclass GoDocument or one of the GoObject classes and add any new properties or other state 

that you want to include in undo and redo operations, your code must follow certain 

conventions, as described below. 

Implementing Undo and Redo support in your application 

If you want to support undo and redo in your application, you will need to do five things: 

• Raise a GoDocument.Changed event for any application-specific state change. 

• Perform the undo and redo actions for any application-specific change by overriding 

the ChangeValue method. 

• Set your document’s GoDocument.UndoManager property. 



GoDiagram 145 Copyright © Northwoods Software 

• Declare groups of changes that the user will want to consider a single logical edit by 

wrapping state-modifying code with calls to StartTransaction and 

FinishTransaction. 

• Implement the user-interface commands to allow users to perform an undo or a 

redo, with the appropriate appearance, if you want anything besides the support for 

Ctrl-Y and Ctrl-Z that GoView provides. 

Go implements undo and redo support for all predefined document and object classes, including 

the node classes.  If you do not extend the state of any documents, you do not need to do the 

first two steps above dealing with application-specific state. 

The built-in support for undo in Go only applies to documents and document objects.  Changes 

to views, such as selection and view position, are not considered to be edits to the document, 

and therefore are not tracked for undo and redo.  Also, the GoUndoManager cannot track any 

changes to GoObjects that are not part of a document. 

IGoUndoableEdit and GoChangedEventArgs 

The basic concept for remembering state changes is the IGoUndoableEdit, an interface that 

describes an object that represents a change to a document and the ability to undo and redo 

that change. 

A change to a document means that some part of the document’s state has been altered.  This 

includes changing the values of any properties of a document, adding GoObjects to a document, 

removing them, and changing any properties or parts of any document objects. 

If you want to add undo and redo functionality to your application, you must make sure that 

your GoDocument and GoObject extensions faithfully signal any state changes by calling 

GoDocument.RaiseChanged or GoObject.Changed respectively, passing the old and new values.  

Your extensions must correspondingly implement the CopyOldValueForUndo, 

CopyNewValueForRedo, and ChangeValue methods as needed. 

Not all document state need participate in this undo framework.  However, you and your users 

must be willing to live with the inconsistencies that might result when the user makes a change 

and a later undo does not restore the state as they might expect.  You may find that some state 

currently associated with a document really belongs in the application, in a view or in a form. 

Extending GoDocument 

The ProtoApp and NodeLinkDemo examples include a representative document extension: 

adding a Location property in the GraphDoc class.  The class definition, with parts elided for 

clarity, looks like the following code: 



VB.NET: 

<Serializable()> Public Class GraphDoc 

  Inherits GoDocument 

 

  Public Sub New() 

    MyBase.New() 

    ' enable undo/redo memory for this document 

    Me.UndoManager = New GoUndoManager() 

  End Sub 

 

  Public Property Location() As String 

    Get 

      Return myLocation 

    End Get 

    Set(ByVal Value As String) 

      Dim old As String = myLocation 

      If Not old = Value Then 

        myLocation = Value 

         ' don’t raise the Changed event unless it really changed 

        RaiseChanged(ChangedLocation, 0, Nothing, 

                     0, old, NullRect,   ' pass the old value 

                     0, Value, NullRect) ' pass the new value 

      End If 

    End Set 

  End Property 

 

  ' actually perform the undo or redo 

  Public Overrides Sub ChangeValue(ByVal e As GoChangedEventArgs, 

ByVal undo As Boolean) 

    Select Case e.Hint 

      Case ChangedLocation 

        Me.Location = CType(e.GetValue(undo), String) 

      Case Else 

        MyBase.ChangeValue(e, undo) 

    End Select 

  End Sub 

 

  ' Event hints 

  Public Const ChangedLocation As Integer = LastHint + 23 

 

  ' Document state 

  Private myLocation As String = "" 

End Class 



GoDiagram 147 Copyright © Northwoods Software 

C#: 

  [Serializable] 

  public class GraphDoc : GoDocument { 

    public GraphDocument() { 

      // enable undo/redo memory for this document 

      this.UndoManager = new GoUndoManager(); 

    } 

 

    // Location property 

    public String Location { 

      get { return myLocation; } 

      set { 

        String old = this.Location; 

        if (old != value) { 

          myLocation = value; 

          // don’t raise the Changed event unless it really changed 

          RaiseChanged(ChangedLocation, 0, null, 

                       0, old, NullRect,    // pass the old value 

                       0, value, NullRect); // pass the new value 

        } 

      } 

    } 

 

    // actually perform the undo or redo 

    public override void ChangeValue(GoChangedEventArgs e, 

                                     bool undo) { 

      switch (e.Hint) { 

        case ChangedLocation: 

          this.Location = (String)e.GetValue(undo); 

          return; 

        default: 

          base.ChangeValue(e, undo); 

          return; 

      } 

    } 

   

    // Event hints 

    public const int ChangedLocation = LastHint+1; 

 

    // Document state 

    private String myLocation = ""; 

  } 



Note that setting the Location property makes sure that there really is a change before setting 

the internal myLocation field and then calling RaiseChanged. 

The call to RaiseChanged passes a hint, ChangedLocation, the old property value (old) and the 

new property value (value).  It is important that the hint be unique within the class and all of its 

superclasses. 

It is also required that the call to RaiseChanged occur after the change has happened, and that 

the update event handler is able to retrieve the previous value.  Normally the previous value is 

passed along as part of the document changed event, so this is not a problem.  The reason for 

the requirement that the previous value be accessible is that the document changed handler 

responsible for undo and redo needs to record the values both before and after an edit.  These 

values are used to construct a GoChangedEventArgs, which implements IGoUndoableEdit. 

A GoChangedEventArgs is constructed using the before and after values from the change’s call 

to RaiseChanged.  In most cases the old value is just fine to remember as is; however if the 

value is a reference to an object that might be modified by further edits, it is important that the 

GoChangedEventArgs keeps a true copy of the old value, rather than just a reference to 

something whose relevant state may be changed.  Thus the GoDocumentChangedEdit 

constructor calls the CopyOldValueForUndo method, which allows the class to decide whether 

the previous value needs to be copied for safekeeping.  Many classes do not have any kinds of 

changes where the previous value will need to be copied, so they do not bother to override 

CopyOldValueForUndo. 

Similarly, GoChangedEventArgs gets the new value by calling the CopyNewValueForRedo 

method.  Again, the new value passed in the call to RaiseChanged usually obeys the value 

semantics needed for the remembering for undo and redo.  If this is not the case, each class that 

extends the undoable document state must override this method to handle the class-specific 

changes to remember the new (current) values.  In the example above, the location is stored as 

an immutable string, so there is no need to override CopyNewValueForRedo.   

Finally, each class must override ChangeValue in order to perform the undo or redo, depending 

on the value of the boolean argument.  For convenience the GoChangedEventArgs.GetValue 

method also takes the same undo parameter to decide whether to return the old/before value 

or the new/after value.  In the example above, the method just needs to set the Location 

property to effect the change.  For change hints not belonging to this class, the method calls the 

base method. 

For efficiency and for convenience the old and new values of a GoChangedEventArgs are not 

simply Objects, but a pairing of an integer, an Object, and a RectangleF.  For those properties 

that can be represented efficiently by an integer, you can use that instead of boxing the integer 



GoDiagram 149 Copyright © Northwoods Software 

by creating an Integer.  For property value types that are PointF, SizeF, RectangleF, or even just 

a single or float, you can use the RectangleF argument to avoid boxing those values.  For those 

properties that can be conveniently represented by an integer and an object, you can use more 

than one of the values.  For example a change to an element of a vector can be represented 

using both the integer and Object parameters for both the old and the new values. 

Extending GoObject subclasses 

For a change to a GoObject, the Hint is GoLayer.ChangedObject.  However, there is no way for 

the document to know how to remember the old or new values for any particular object, nor 

how to perform that particular state transition.  Instead those responsibilities are transferred to 

GoObject, which has the same CopyOldValueForUndo, CopyNewValueForRedo, and 

ChangeValue methods. 

The implementation is very similar to that for adding properties to documents.  What follows is 

the definition of LimitedPort class, stripped down to essentials regarding the MaxLinks 

property, which governs the maximum number of links allowed on the port. 

 

  public class LimitedPort : GoPort { 

    public int MaxLinks { 

      get { return myMaxLinks; } 

      set { 

        int old = this.MaxLinks; 

        if (old != value && value >= 0) { 

          myMaxLinks = value; 

          Changed(ChangedMaxLinks, 

                  old, null, NullRect, 

                  value, null, NullRect); 

        } 

      } 

    } 

     

    public override void ChangeValue(GoChangedEventArgs e, bool 

undo) { 

      switch (e.SubHint) { 

        case ChangedMaxLinks: 

          this.MaxLinks = e.GetInt(undo); 

          return; 

        default: 

          base.ChangeValue(e, undo); 

          return; 

      } 



    } 

 

    // Event hints 

    public const int ChangedMaxLinks = LastChangedHint + 11;  

 

    // LimitedPort state 

    private int myMaxLinks = 999999; 

  } 

  

Handling Big Changes 

Keeping track of all these edits is simple enough, but incurs a lot of overhead for detecting the 

change and remembering the GoChangedEventArgs.  What should you do when you know you 

might be making a lot of changes and don’t want the repeated overhead? 

Your initial reaction might be to suspend updates.  Setting SuspendsUpdates to true will turn off 

all event notification.  After all of the batched changes are done, you would set 

SuspendsUpdates to false to re-enable event notification, and event handlers would have to 

assume anything and everything had possibly changed.  This is true both at the GoDocument 

level as well as the GoObject level. 

Suspending updates is still possible, but with the introduction of undo managers, it is more 

complicated.  The problem is that implementing undo requires getting the state before the 

changes.  Turning off event notification means that there’s no way to keep track of any changes 

that are going on.  Trying to save all state at the time of the setting SuspendsUpdates true 

would be horribly inefficient, particularly for documents.  Instead it is better to save very 

targeted state, depending on the kinds of changes that are expected to occur during the update 

suspension. 

To accomplish this saving of state beforehand, Go supports a mechanism analogous to the 

GoDocument.RaiseChanged and GoObject.Changed mechanism used for notification after a 

change.  The RaiseChanging/Changing methods are exactly like the RaiseChanged/Changed 

methods except they should be called just before a change.  The changing methods don’t need 

any old or new value parameters because the old state of the object is still current and the 

future state is not yet known. 

Here is an example of how before changing can be done.  This is how the 

GoDocument.AllArranged case is implemented, when trying to modify the locations of all of the 

nodes (and links) in a document: 

 

     



GoDiagram 151 Copyright © Northwoods Software 

  // care about undo/redo, so need to call RaiseChanging here, 

  // so that the before-layout geometries of all top-level 

  // objects can be remembered 

  RaiseChanging(AllArranged, 0, null); 

  this.SuspendsUpdates = true; 

  LayoutWholeDiagram(); 

  this.SuspendsUpdates = false; 

  // care about undo/redo, so need to call RaiseChanged here; 

  // don’t need to pass previous arrangement here 

  RaiseChanged(AllArranged, 0, null, 0, null, NullRect, 

                                     0, null, NullRect); 

The “Changing” methods create GoChangedEventArgss whose IsBeforeChanging property is 

true.  Event handlers that don’t care about notification before a change should ignore these 

events; for example, GoView ignores these events.  But GoUndoManager, described below, 

uses them to remember the state before the event. 

The CopyOldValueForUndo method, when invoked for the AllArranged Changed event, is 

responsible for getting the old/previous state.  Since that state is not passed in via the previous 

value parameters, it must copy it from the current state of the document.  Here we assume the 

CopyAllNodeLocationsAndLinkPaths method produces an ArrayList holding all the PointF 

information about the nodes and links. 

 

    public override void CopyOldValueForUndo(GoChangedEventArgs e) { 

      switch (e.Hint) { 

        . . .  

        case AllArranged: 

          // There’s no previous value info passed in, must produce 

it 

          if (e.IsBeforeChanging) {  // only beforehand, for undo 

            e.OldValue = CopyAllNodeLocationsAndLinkPaths(); 

          } 

          return; 

        default: base.CopyOldValueForUndo(e); return; 

      } 

    } 

 

The CopyNewValueForRedo method is implemented in a similar manner for the AllArranged 

case. 

 

   public override void CopyNewValueForRedo(GoChangedEventArgs e) { 

      switch (e.Hint) { 



        . . .  

        case AllArranged: { 

          // There’s no new value info passed in, must produce it 

          if (!e.IsBeforeChanging) {  // only afterwards, for redo 

            e.NewValue = CopyAllNodeLocationsAndLinkPaths(); 

          } 

          return; } 

        default: base.CopyNewValueForRedo(e); return; 

      } 

    } 

  

The ChangeValue method, called during undo and redo, sets all the node and link geometries 

given the information in the array stored in the GoChangedEventArgs. 

 

 public override void ChangeValue(GoChangedEventArgs e, bool undo) { 

    switch (e.Hint) { 

      . . .  

      case AllArranged: { 

       // Move the nodes and links according to info in saved array 

        ArrayList copy = (ArrayList)e.GetValue(undo); 

        RestoreNodeLocationsAndLinkPaths(copy); 

        InvalidateViews(); 

        return; } 

      default: base.ChangeValue(e, undo); return; 

    } 

  } 

 

 GoUndoManager, CompoundEdits and Transactions 

The edits implemented by GoChangedEventArgs are very detailed, specific changes that can be 

undone and redone.  But when a user drags a selection, the user is changing the positions of 

possibly thousands of objects.  Clearly the user will not expect that an undo command only 

move one of those objects back to its earlier location. 

Go implements a CompoundEdit class for keeping track of an ordered list of IGoUndoableEdits.  

Each compound edit is composed of all the edits that occur due to a particular user gesture or 

command.  The compound edits in turn are managed by the undo manager. 



GoDiagram 153 Copyright © Northwoods Software 

GoUndoManager is a GoDocument.Changed event handler so that it can detect all of the 

changes that happen to a document, and then record them by producing and collecting 

GoChangedEventArgs in the GoUndoManager’s current CompoundEdit. 

To control when a compound edit is started and finished, GoUndoManagers support the notion 

of a transaction.  Call StartTransaction before any changes occur and call FinishTransaction 

afterwards.  The first detected document change will open up a new compound edit.  All 

succeeding edits are added to this current compound edit.  A call to FinishTransaction will close 

up the current compound edit and add it to the undo manager’s list of undoable edits. 

For convenience, StartTransaction, FinishTransaction, and AbortTransaction are defined on 

GoDocument to call the corresponding method on the document’s undo manager.  They are 

also defined on GoView, to call the corresponding method on the view’s document. 

Views and tools are naturally responsible for detecting the start of a user action or command 

and knowing when it is finished.  Thus the default implementations of many commands in 

GoView and GoTool start and end transactions.  These methods include: 

• EditCopy (start and end) 

• EditCut (start and end) 

• EditPaste (start and end) 

• DoExternalDrop (start and end) 

• MoveSelection (start and end) 

• CopySelection (start and end) 

• DeleteSelection (start and end) 

• GoTool.Start (start) 

• GoTool.Stop (end) 

In addition, some methods such as GoText.DoBeginEdit and DoEndEdit enclose editing activity 

within a transaction.  However, any code anywhere can start and end transactions on a 

document.  When you add your own commands to your application, you will probably want to 

wrap any document changing code with a transaction. 

Transactions may be nested (e.g. start, start, end, end).  Only the final transaction end causes 

the compound edit to be closed and added to the undo manager’s list.  Beware calling 

StartTransaction without a corresponding call to FinishTransaction, perhaps due to an 

exception. 



Each document that supports undo must have a GoUndoManager.  Normally each document 

will have its own undo manager, but when there are interrelated documents where one change 

affects other documents, you may want to share one undo manager amongst several 

documents.  Setting GoDocument.UndoManager automatically makes the manager a changed 

event handler on that document. 

A call to FinishTransaction requires a String argument that describes that particular transaction 

to the user.  This is the “presentation name”.  GoUndoManager provides default presentation 

names for the predefined transactions.  These are the only strings in Go that should be localized 

for international applications.  You can do the localization by setting 

GoUndoManager.ResourceManager, which GoUndoManager.GetPresentationName uses to 

try to replace the default presentation name for transactions. 

A call of AbortTransaction will discard the current compound edit, rather than adding it to the 

undo manager.  Unlike a transactional database system, aborting a transaction in Go does not 

automatically undo all of the changes that may have happened since the transaction start.  This 

is because there might not be an undo manager, or because not all changes are being recorded. 

Another difference between transactions with Go documents and database systems is that 

there is no prohibition on examining or even modifying documents or their objects without a 

preceding call to StartTransaction.  There is no practical way to enforce the prohibition of 

reading the data structures. 

Defining Menu Commands 

GoUndoManager provides implementations of Undo, Redo, CanUndo, CanRedo, and Clear that 

user interface implementations should call.   

GoDocument provides these same methods by delegating to the document’s undo manager, if 

one exists.  GoView also provides these same methods, by delegating to the document. 

The following code is taken from the examples.  Adding user-interface support for undo entails 

calling CanUndo to enable/disable the menu item and calling Undo to perform the action.  In 

addition, you may wish to customize the menu item text with the presentation name. 

 

      editUndoMenuItem.Enabled = view.CanUndo(); 

      if (editUndoMenuItem.Enabled) { 

        editUndoMenuItem.Text = "Undo " + 

          view.Document.UndoManager.UndoPresentationName; 

      } else { 

        editUndoMenuItem.Text = "Undo"; 

      } 



GoDiagram 155 Copyright © Northwoods Software 

      editRedoMenuItem.Enabled = view.CanRedo(); 

      if (editRedoMenuItem.Enabled) { 

        editRedoMenuItem.Text = "Redo " + 

          view.Document.UndoManager.RedoPresentationName; 

      } else { 

        editRedoMenuItem.Text = "Redo"; 

      } 



8. XML, SVG AND PDF 

GoDiagram provides support for Extensible Meta-Language (XML) and Scalable Vector Graphics 

(SVG) documents through the Northwoods.Go.Xml and Northwoods.Go.Svg assemblies, 

respectively.   

The Xml assembly allows the developer to both read and write XML documents corresponding 

to particular GoDiagrams.  The format of these XML documents (the document type definition 

or schema) is entirely controlled by the developer. 

The Svg assembly is a specific use of the Xml assembly that specifies how to generate SVG from 

a GoView.  Note that reading SVG documents into GoDiagram is not supported. 

The Northwoods.Go.Xml assembly consists of 4 principal classes: 

• GoXmlReader 

• GoXmlWriter 

• GoXmlTransformer 

• GoXmlBindingTransformer 

The GoXmlWriter and GoXmlReader classes define the Generate and Consume methods that 

provide the basic control for the writing and reading of XML documents.   

The GoXmlTransformer class provides the detailed information necessary to transform a 

particular GoDiagram class to or from an XML element.  Both GoXmlReader and GoXmlWriter 

have a collection of GoXmlTransformers associated with them.  A GoXmlTransformer subclass 

should be defined for each GoDiagram class that needs to be translated to or from XML. 

The GoXmlBindingTransformer class inherits from GoXmlTransformer and provides a way to 

establish bindings between XML element attributes and object properties. 



GoDiagram 157 Copyright © Northwoods Software 

Writing and Reading XML 

Some Simple Examples using GoXmlBindingTransformer 

For the majority of simple diagrams, using GoXmlBindingTransformer should be sufficient to 

implement persistence using custom XML.  This assumes that you can define your own 

application-specific XML schema – i.e. you do not need to meet the requirements of some 

predefined XML format. 

Let us consider a diagram consisting of GoBasicNodes and GoLabeledLinks. 

 

The XML content for this diagram in our application will look like: 

 

<graph> 

  <node Port="0" label="Red" color="-65536" loc="216 171" /> 

  <node Port="1" label="Coral" color="-32944" loc="302 230" /> 

  <node Port="2" label="White" color="-1" loc="176 267" /> 

  <link from="0" to="1" label="from red" /> 

  <link from="1" to="2" label="from coral" /> 

</graph> 

There are three different kinds of XML elements: one for the document, one for the nodes, and 

one for the links.  Each kind of element has a number of attributes that correspond to property 

values on their respective objects.  We can declare bindings between XML element attributes 

and object properties by using the GoXmlBindingTransformer class.  A transformer knows how 

to convert an XML element into a corresponding object and the reverse process.  In addition, a 

GoXmlBindingTransformer has a Prototype property which is copied to create a new instance 

of an object when the XML element is read.  It also has an ElementName property that specifies 

the name of the XML element during writing and during reading, the latter to identify which 

transformer to use. 

We need to define three GoXmlBindingTransformers, one for each kind of XML element.  We 

will put this code into a single method that can be used for initializing both a GoXmlWriter as 



well as a GoXmlReader, since the bindings should be the same when writing as well as when 

reading XML. 

For each kind of object we need to create an instance of it that can be copied.  You can do as 

much initialization as you want for each prototype object.  Each transformer is registered with 

the reader or writer by calling AddTransformer.  The arguments to the GoXmlBindingTransform 

constructor are the ElementName and the Prototype object.  If the element name is not 

supplied, the name of the Type of the prototype object is used. 

The calls to AddBinding establish the mapping between an attribute name and a property for 

that particular transformer.  The property specifier is often a simple property name, but it can 

be a “path” of property names separated by periods.  This is useful when the value you want to 

get is not a property on the immediate object, but is a property on a related object, typically on 

a part of it. 

 

public void RegisterTransformers(GoXmlReaderWriterBase rw) { 

  // create a prototype document 

  GoDocument doc = new GoDocument(); 

  GoXmlBindingTransformer bt = new GoXmlBindingTransformer("graph", doc); 

  rw.AddTransformer(bt); 

 

  // create a prototype node 

  GoBasicNode bn = new GoBasicNode(); 

  bn.LabelSpot = GoObject.Middle; 

  bn.Text = ""; 

  GoXmlBindingTransformer bt1 = new GoXmlBindingTransformer("node", bn); 

  // generates attributes for all named ports, to define their id's 

  // without generating separate elements for them 

  bt1.HandlesNamedPorts = true; 

  // map the "label" attribute to the GoBasicNode.Text property 

  bt1.AddBinding("label", "Text"); 

  // the "color" attribute is the GoBasicNode.Shape.BrushColor property 

  bt1.AddBinding("color", "Shape.BrushColor"); 

  bt1.AddBinding("loc", "Location"); 

  rw.AddTransformer(bt1); 

 

  // create a prototype link 

  GoLabeledLink ll = new GoLabeledLink(); 

  ll.ToArrow = true; 

  GoText lab = new GoText(); 

  lab.Selectable = false; 

  ll.MidLabel = lab; 

  GoXmlBindingTransformer bt2 = new GoXmlBindingTransformer("link", ll); 

  // the "from" attribute will be a reference to the 

  // GoLabeledLink.FromPort object 



GoDiagram 159 Copyright © Northwoods Software 

  bt2.AddBinding("from", "FromPort"); 

  bt2.AddBinding("to", "ToPort"); 

  // the "label" value is the GoLabeledLink.MidLabel.Text property 

  bt2.AddBinding("label", "MidLabel.Text"); 

  rw.AddTransformer(bt2); 

} 

We also need to handle references between objects.  By far the most common case of this is 

where a link refers to two ports.  If you set the HandlesNamedPorts property to true on a 

GoXmlBindingTransformer for a node class, it will automatically read and write XML attributes 

for each GoPort that is a named child of the node.  The name of the port is used as the attribute 

name.  The attribute value is a unique identifier.  This identifier can be used as the value for an 

attribute that corresponds to a property that refers to the port.  In this case, GoBasicNode just 

has a single port, named “Port”. 

Writing an XML file is just: 

GoXmlWriter xw = new GoXmlWriter(); 

RegisterTransformers(xw); 

xw.Objects = goView1.Document; 

using (StreamWriter file = new StreamWriter(@"C:\temp\test.xml")) { 

  xw.Generate(file); 

} 

Reading an XML file into a newly created GoDocument is: 

GoXmlReader xr = new GoXmlReader(); 

RegisterTransformers(xr); 

using (StreamReader file = new StreamReader(@"C:\temp\test.xml")) { 

  goView1.Document = (GoDocument)xr.Consume(file); 

} 

Note how the shared RegisterTransformers method is used to make sure the same transformers 

are defined when writing as when reading. 

Of course you can easily customize what information is stored in the XML by adding more 

attribute/property bindings. 

You can handle other object types fairly easily.  For example, GoIconicNode: 

   

  GoIconicNode ic = new GoIconicNode(); 

  ic.Initialize(null, "", ""); 

  bt = new GoXmlBindingTransformer("iconicnode", ic); 

  bt.HandlesNamedPorts = true; 

  bt.AddBinding("name", "Image.Name"); 

  bt.AddBinding("index", "Image.Index"); 

  bt.AddBinding("iconsize", "Icon.Size"); 



  bt.AddBinding("loc", "Location"); 

  rw.AddTransformer(bt); 

Or GoGeneralNode: 

 

  GoGeneralNode gn = new GoGeneralNode(); 

  gn.Initialize(null, "", "", "", 0, 0); 

  bt = new GoXmlBindingTransformer(gn); 

  // each node gets a unique id 

  bt.IdAttributeUsedForSharedObjects = true; 

  // each port gets a separate child element 

  bt.GeneratesPortsAsChildElements = true; 

  bt.BodyConsumesChildElements = true; 

  bt.AddBinding("name", "Image.Name"); 

  bt.AddBinding("index", "Image.Index"); 

  bt.AddBinding("iconsize", "Icon.Size"); 

  bt.AddBinding("top", "TopLabel.Text"); 

  bt.AddBinding("bottom", "BottomLabel.Text"); 

  bt.AddBinding("loc", "Location"); 

  rw.AddTransformer(bt); 

Note that for GoGeneralNode there may be an arbitrary number of ports, each with its own 

name and need for unique identifier.  By setting the GeneratesPortsAsChildElements property, 

the transformer will generate an element for each port.  We also set 

BodyConsumesChildElements to make sure that when reading XML, it will try to create objects 

for each of the nested XML elements. 

That means we also need to define a transformer for the GoGeneralNodePort class: 

 

  GoGeneralNodePort gnp = gn.MakePort(true); 

  bt = new GoXmlBindingTransformer(gnp); 

  // each port gets a unique id 

  bt.IdAttributeUsedForSharedObjects = true; 

  bt.AddBinding("left", "LeftSide"); 

  bt.AddBinding("name", "Name"); 

  rw.AddTransformer(bt); 

Setting the IdAttributeUsedForSharedObjects property to true is necessary to make sure the 

“id” attribute is used to record a unique identifier for each port, unique across the whole 

document.  The two transformers together produce XML such as: 

 

<GoGeneralNode id="20" name="star.gif" index="-1" 

    iconsize="20 24.14583" top="top" bottom="bottom" loc="71 275"> 

  <GoGeneralNodePort id="16" left="true" name="L0" /> 



GoDiagram 161 Copyright © Northwoods Software 

  <GoGeneralNodePort id="17" left="true" name="L1" /> 

  <GoGeneralNodePort id="18" left="false" name="R0" /> 

  <GoGeneralNodePort id="19" left="false" name="R1" /> 

</GoGeneralNode> 

Although there is a limit to the complexity of diagrams that you can read and writing using 

GoXmlBindingTransformer without having to override any methods of GoXmlTransformer, you 

may be able to handle GoSubGraph and other more complex classes. 

The transformer for GoSubGraph depends on the HandlesChildren property to cause the 

transformer to generate nested XML elements in the body of the element for the subgraph.  

When consumed, those nested elements result in GoObjects that are added to the subgraph. 

 

  GoSubGraph sg = new GoSubGraph(); 

  sg.Port = new GoPort();  // make each subgraph have a Port 

  sg.Port.FromSpot = GoObject.NoSpot; 

  sg.Port.ToSpot = GoObject.NoSpot; 

  bt = new GoXmlBindingTransformer("GoSubGraph", sg); 

  // to generate id for GoSubGraph as a node 

  bt.IdAttributeUsedForSharedObjects = true; 

  // to generate id for GoSubGraph.Port 

  bt.HandlesNamedPorts = true; 

  // generates children and consumes them by adding to the subgraph 

  bt.HandlesChildren = true; 

  // make sure reading/writing each child calls the 

  // Generate/ConsumeChildAttributes methods 

  bt.HandlesChildAttributes = true; 

  // add attributes for SavedBounds or SavedPath to each child node 

  // or link when the subgraph is collapsed 

  bt.HandlesSubGraphCollapsedChildren = true; 

  bt.AddBinding("back", "BackgroundColor"); 

  bt.AddBinding("opacity", "Opacity"); 

  bt.AddBinding("border", "BorderPen.Color"); 

  bt.AddBinding("borderwidth", "BorderPen.Width"); 

  bt.AddBinding("loc", "Location"); 

  // define these AFTER defining Location binding 

  bt.AddBinding("wasexpanded", "WasExpanded"); 

  bt.AddBinding("expanded", "IsExpanded"); 

  rw.AddTransformer(bt); 

The GoSubGraph transformer also depends on the HandlesChildAttributes and 

HandlesSubGraphCollapsedChildren properties, which are responsible for making sure each 

nested child element gets additional attributes specified by the (parent) subgraph.  This 



information is used to associate saved information for each child node and link when the 

subgraph is collapsed. 

Here are the transformers for the example class ClassDiagramNode.  There are three 

transformers because there are logically three levels of nesting of GoObjects in each 

ClassDiagramNode. 

 

  ClassDiagramNode cdn = new ClassDiagramNode(); 

  bt = new GoXmlBindingTransformer(cdn); 

  bt.IdAttributeUsedForSharedObjects = true; 

  bt.HandlesNamedPorts = true; 

  bt.HandlesChildren = true;  // generates and consumes child 

objects 

  // collection of children is held in this property: 

  bt.ChildrenCollectionPath = "MyBody"; 

  bt.AddBinding("spread", "LinkPointsSpread"); 

  bt.AddBinding("loc", "Location"); 

  bt.AddBinding("startcolor", "StartColor"); 

  bt.AddBinding("endcolor", "EndColor"); 

  bt.AddBinding("desc", "Description.Text"); 

  bt.AddBinding("itemwidth", "ItemWidth"); 

  rw.AddTransformer(bt); 

 

  ClassDiagramNodeItemList cdnil = cdn.MakeList(""); 

  bt = new GoXmlBindingTransformer(cdnil); 

  bt.HandlesChildren = true;  // generates and consumes child 

objects 

  // collection of children is held in this property: 

  bt.ChildrenCollectionPath = "List"; 

  bt.AddBinding("name", "Text"); 

  bt.AddBinding("itemwidth", "ItemWidth"); 

  rw.AddTransformer(bt); 

 

  ClassDiagramNodeItem cdni = cdn.MakeItem("", ""); 

  bt = new GoXmlBindingTransformer(cdni); 

  bt.AddBinding("text", "Text"); 

  bt.AddBinding("img", "Image.Name"); 

  bt.AddBinding("imgidx", "Image.Index"); 

  rw.AddTransformer(bt); 

The ChildrenCollectionPath property specifies a property of the object that is supposed to be 

the collection of objects represented by the nested XML elements.  When 

ChildrenCollectionPath is the empty string (which is the default), the child objects are taken 



GoDiagram 163 Copyright © Northwoods Software 

from and are added to the object, which is assumed to be a GoGroup.  In the case of 

ClassDiagramNode there are additional layers of groups that are not reflected in the logical 

nesting of XML elements. 

Tree Structured Graphs 

When your graphs consist of nodes and links connected in a tree-like fashion, you might not 

want to represent each link as a separate XML element, since you can specify the tree-parent 

node by using an XML attribute.  The XML data is basically just a list of nodes: 

 

<graph> 

  <node id="0" label="Root" /> 

  <node id="1" label="A1" parent="0" /> 

  <node id="2" label="A2" parent="0" /> 

  <node id="3" label="B1" parent="2" /> 

  <node id="4" label="C1" parent="3" /> 

  <node id="5" label="D1" parent="4" /> 

  <node id="6" label="D2" parent="4" /> 

  <node id="7" label="B2" parent="2" /> 

</graph> 

A single transformer is needed: 

 

  GoBasicNode n = new GoBasicNode(); 

  n.LabelSpot = GoObject.Middle; 

  n.Text = ""; 

  n.Shape = new GoRoundedRectangle(); 

  GoXmlBindingTransformer tr = new GoXmlBindingTransformer("node", 

n); 

  // make sure each node gets a unique ID 

  tr.IdAttributeUsedForSharedObjects = true; 

  // provide the prototype link for connecting the nodes 

  tr.TreeLinkPrototype = new GoLink(); 

  // indicate the direction of the link (from parent to child) 

  tr.TreeLinksToChildren = true; 

  tr.AddBinding("label", "Text"); 

  // add an attribute that refers to the parent node in the tree 

  tr.AddBinding("parent", "TreeParentNode"); 

To write out this graph: 

 

  GoXmlWriter wrt = new GoXmlWriter(); 

  wrt.AddTransformer(tr); 



  wrt.Objects = goView1.Document; 

  using (StreamWriter file = new StreamWriter( . . . )) { 

    wrt.Generate(file); 

  } 

To read and layout this graph: 

 

  GoXmlReader rdr = new GoXmlReader(); 

  rdr.AddTransformer(tr); 

  rdr.RootObject = goView1.Document; 

  using (StreamReader file = new StreamReader( . . . )) { 

    rdr.Consume(file); 

  } 

 

  GoLayoutTree layout = new GoLayoutTree(); 

  layout.Document = doc; 

  // other customizations are described in the GoLayout User Guide 

  layout.PerformLayout(); 

This results in the following view: 

 

Tree Structured XML 

Another common method of representing trees in XML is with the nesting of XML elements. 

<graph> 

  <node label="Root"> 

    <node label="A1" /> 

    <node label="A2"> 

      <node label="B1"> 

        <node label="C1"> 

          <node label="D1" /> 

          <node label="D2" /> 

        </node> 

      </node> 

      <node label="B2" /> 

    </node> 

  </node> 

</graph> 



GoDiagram 165 Copyright © Northwoods Software 

GoXmlBindingTransformer makes this easier by providing several “Tree…” properties. 

   

  GoBasicNode n = new GoBasicNode(); 

  n.LabelSpot = GoObject.Middle; 

  n.Text = ""; 

  n.Shape = new GoRoundedRectangle(); 

  GoXmlBindingTransformer tr = new GoXmlBindingTransformer("node", 

n); 

  // indicate that the XML consists of nested elements 

  tr.TreeStructured = true; 

  // provide the prototype link for connecting the nodes 

  tr.TreeLinkPrototype = new GoLink(); 

  // indicate the direction of the link (from parent to child) 

  tr.TreeLinksToChildren = true; 

  tr.AddBinding("label", "Text"); 

Unlike the cases above, we need to give the GoXmlWriter the specific root node(s) from which 

to generate XML.  If we used the whole document, each node would be written out separately, 

causing much duplication of information in subtrees.  To write out this graph: 

 

  GoXmlWriter wrt = new GoXmlWriter(); 

  wrt.AddTransformer(tr); 

  // need to select root node(s) 

  GoCollection coll = new GoCollection(); 

  coll.Add(goView1.Document.FindNode("Root")); 

  wrt.Objects = coll; 

  using (StreamWriter file = new StreamWriter( . . . )) { 

    wrt.Generate(file); 

  } 

To read and layout this graph: 

 

  GoXmlReader rdr = new GoXmlReader(); 

  rdr.AddTransformer(tr); 

  rdr.RootObject = goView1.Document; 

  using (StreamReader file = new StreamReader( . . . )) { 

    rdr.Consume(file); 

  } 

 

  GoLayoutTree layout = new GoLayoutTree(); 

  layout.Document = doc; 

  // other customizations are described in the GoLayout User Guide 

  layout.PerformLayout(); 



Writing XML Using GoXmlTransformer 

Let’s start by taking an overview of the process of generating an XML document from 

GoDiagram.  The GoXmlWriter class has a RootElementName property that defines the name of 

the root XML element.  The GoXmlWriter class also has an Objects property that defines the 

collection of objects that will be written out under this root element.   

The GoXmlWriter Generate method iterates across this collection of objects in two passes.  The 

first pass allows a table of shared objects to be created by calling the GenerateDefinitions 

method on the transformer associated with each object.  The second pass actually generates the 

XML elements and their attributes by calling GenerateElements, GenerateAttributes, and 

GenerateBody on the transformer associated with each object.  We will discuss these 

transformer methods in a few paragraphs. 

A simple example is provided in the Processor sample application.  The following code shows the 

ProcessDocument.Store method used to generate XML from a Process Flow Diagram: 

     

    public void Store(StreamWriter file) { 

      GoXmlWriter writer = new GoXmlWriter(); 

      writer.RootElementName = "process"; 

      writer.AddTransformer(new TransformActivityNode()); 

      writer.AddTransformer(new TransformActivityPort()); 

      writer.AddTransformer(new TransformFlowLink()); 

      writer.AddTransformer(new TransformComment()); 

      writer.AddTransformer(new TransformRemoteConnectorNode()); 

      writer.Objects = this; 

      writer.Generate(file); 

    } 

The code above simply identifies the name of the root XML element, adds a GoXmlTransformer 

for each separate class that needs to be converted to XML, and supplies the document as the 

collection of Objects to be transformed into XML. 

Clearly, the majority of the transformation process is occurring in the GoXmlTransformer 

subclasses, so we will next examine GoXmlTransformers in more detail. 

A GoXmlTransformer has a TransformerType property that specifies the class of objects that 

the transformer is associated with.  It also has an ElementName property that specifies the XML 

element name to be generated for objects of that type.  A GoXmlTransformer also has methods 

for the object definition and generation of the element and attributes associated with that type.  

As described earlier, the GenerateDefinitions method of the GoXmlTransformer will be invoked 

by the GoXmlWriter.Generate method on the first pass through the objects supplied by the 



GoDiagram 167 Copyright © Northwoods Software 

GoXmlWriter.Objects property.  The GenerateElement, GenerateAttributes, and GenerateBody 

methods will be called on the second pass through the objects. 

The behavior of the GoXmlTransformer.GenerateDefinitions method (assuming the 

IdAttributeUsedForSharedObjects property is true) is to simply add the object instance to an 

internal shared objects table (if not already in that table) and return an identifier uniquely 

associated with this object.  Furthermore, the default behavior of the 

GoXmlTransformer.GenerateAttributes method is to add an “id” attribute with that identifier 

value to the element generated by the transformer.  This allows us to refer to specific object 

instances from other objects within the generated XML by specifying these identifiers.  We 

define this entire shared objects table during pass 1 so that we will have access to these 

identifiers for all the objects before we begin generating the actual XML elements.  Typically, 

you do not need to override GenerateDefinitions unless the object associated with your 

GoXmlTransformer contains other objects that you wish to refer to in the generated XML, in 

which case you may want to call Writer.DefineObject for each contained child object, which will 

in turn cause GenerateDefinitions to be called on the transformer associated with those 

children. 

The GenerateElement method is very simple and rarely needs to be overridden.  The default 

behavior of GenerateElement is to generate an XML element with the name defined by the 

GoXmlTransformer ElementName property.  The ElementName property is typically set in the 

constructor for your subclass of GoXmlTransformer. 

The GenerateAttributes method allows you to specify the name and value of whatever 

attributes you would like to add to the element generated by GenerateElement.  Attributes are 

added with the WriteAttrVal method. The WriteAttrVal method is overloaded by datatype of 

the attribute argument to convert attribute values of different data types to the String data type 

which is actually written as the attribute value. 

The GenerateBody method allows you to generate any nested elements that are part of the 

rendering of an object.  You may want to call Writer.GenerateObject for each contained child 

object, which will in turn cause GenerateElement, GenerateAttributes, and GenerateBody to be 

called on the transformer associated with those children. 

Let’s look at that portion of TransformActivityNode in the Processor sample application.that is 

used to write XML. 

 

  public class TransformActivityNode : GoXmlTransformer { 

    public TransformActivityNode() { 

      this.TransformerType = typeof(ActivityNode);  

      this.ElementName = "activity"; 



      this.IdAttributeUsedForSharedObjects = true; 

    } 

 

    public override void GenerateDefinitions(Object obj) { 

      base.GenerateDefinitions(obj); 

      ActivityNode n = (ActivityNode)obj; 

      foreach (IGoPort p in n.Ports) { 

        this.Writer.DefineObject(p.GoObject); 

      } 

    } 

    public override void GenerateAttributes(Object obj) { 

      base.GenerateAttributes(obj); 

      ActivityNode n = (ActivityNode)obj; 

      WriteAttrVal("type", (int)n.ActivityType); 

      WriteAttrVal("xy", n.Icon.Position); 

      WriteAttrVal("size", n.Icon.Size); 

      WriteAttrVal("label", n.Text); 

      if (n.LabelOffset != new SizeF(-99999, -99999)) 

        WriteAttrVal("labeloffset", n.LabelOffset); 

    } 

    public override void GenerateBody(Object obj) { 

      base.GenerateBody(obj); 

      ActivityNode n = (ActivityNode)obj; 

      foreach (IGoPort p in n.Ports) { 

        this.Writer.GenerateObject(p.GoObject); 

      } 

    } 

  } 

The constructor in the code above specifies the type associated with the transformer and the 

name of the element to be generated for objects of that type.  In addition, it sets 

IdAttributeUsedForSharedObjects to true to enable the recording and generation of object ids 

in the GenerateDefinitions phase of the process. 

GenerateDefinitions simply calls the Writer’s DefineObjects method for the port objects 

contained in the ActivityNode.  This causes the id attributes to be generated for these ports so 

they can be referred to by other elements in the generated XML  (for example by FlowLinks). 

GenerateAttributes specifies the attribute names and values for those things that can be 

different between different instances of ActivityNode in the Processor application.  Note that 

this only writes out information that is needed for correct operation of the application.  It does 

not write out incidental information, such as the font used by the node’s Label, to allow 

flexibility on the part of the application to decide how to display the text. 



GoDiagram 169 Copyright © Northwoods Software 

GenerateBody simply calls the Writer’s GenerateObjects method for the port objects contained 

in the ActivityNode.  This causes nested “port” elements to be generated within the “activity” 

element–the details are defined by the TransformActivityPort class. 

The XML output by this code for a simple Process Flow Diagram consisting of 2 nodes and 1 link 

is as follows: 

<process> 

  <activity id="0" type="0" xy="131 124" size="48 48" label="Start"> 

    <port id="1" UserFlags="0" xy="171 144" spot="64" /> 

  </activity> 

  <activity id="2" type="1" xy="244 124" size="48 48" 

label="Finish"> 

    <port id="3" UserFlags="0" xy="244 144" spot="256" /> 

  </activity> 

  <flow from="1" to="3" 

        points="179 148 189 148 189 148 189 148 234 148 244 148" 

        label="label" labeloffset="0 0" labelsegment="3" 

        labelpercentage="50" /> 

</process> 

We can see that the root element is indeed named “process”, as specified in the Store method.  

We can see the “activity” elements and their attributes generated as specified by the 

TransformActivityNode class, and also the “port” elements generated by the 

TransformActivityPort class.  Finally, we can see the “flow” element with attributes specifying 

the ids of the “from” and “to” ports of the link.   

While we have discussed how id attributes are generated, we have not yet discussed how 

references to these ids are generated.  We’ll examine generating references to other object ids 

by examining the generation of the “to” and “from” attributes within the “flow” element in 

TransformFlowLink. 

The GenerateAttributes method within this the TransformFlowLink class generates the 

attributes that refer to the port ids by using the Writer’s FindShared method.  This method 

returns the id of an object, assuming that IdAttributeUsedForSharedObjects is true and that 

GenerateDefinitions has been called on that object in pass 1. 

The following code fragment from the GenerateAttributes method of theTransformFlowLink 

demonstrates the use of the FindShared method and the generation of the “from” and “to” 

attributes. 

 

    public override void GenerateAttributes(Object obj) { 

      base.GenerateAttributes(obj); 

      FlowLink flow = (FlowLink)obj; 



      GoPort p = flow.FromPort as GoPort; 

      if (p != null) { 

        String fromid = this.Writer.FindShared(p); 

        WriteAttrVal("from", fromid); 

      } 

      p = flow.ToPort as GoPort; 

      if (p != null) { 

        String toid = this.Writer.FindShared(p); 

        WriteAttrVal("to", toid); 

      } 

 ... 

    } 

 

Reading XML Using GoXmlTransformer 

Let’s now examine the process of consuming an XML document to create GoObjects.  The 

GoXmlReader.Consume method takes a file or System.Xml.XmlDocument as an argument and 

causes Objects to be created corresponding to the elements in the XML document.  The 

RootObject property defines the list to which the newly created objects are added.  If the 

RootObject is an IGoCollection such as a GoDocument and the newly created object is a 

GoObject, the newly created GoObjects are added to the GoDocument and are immediately 

visible in any GoView for that GoDocument. 

The GoXmlReader.Consume method calls ConsumeRootElement, ConsumeRootAttributes, 

ConsumeRootBody, and ProcessDelayedObjects.  If your root element has attributes you can 

override ConsumeRootAttributes to read those attributes.  ConsumeRootBody will call 

ConsumeObject on each of the elements directly contained in the root element of the XML file.  

This will in turn call the Allocate, ConsumeAttributes, and ConsumeBody methods on the 

GoXmlTransformer associated with the element name.  ProcessDelayedObject updates 

references to objects that may have been generated as the new objects were created.   Note 

that ProcessDelayedObject runs only after the all the elements have been processed and all the 

objects corresponding to these elements have been created.  We will say more about this 

process in the following paragraphs. 

A simple example is provided in the Processor sample application.  The following code shows the 

ProcessDocument.Load method used to read an XML document and create a Process Flow 

Diagram: 

 

    public void Load(StreamWriter file) { 

      StartTransaction(); 



GoDiagram 171 Copyright © Northwoods Software 

      Clear(); 

      GoXmlReader reader = new GoXmlReader(); 

      reader.AddTransformer(new TransformActivityNode()); 

      reader.AddTransformer(new TransformActivityPort()); 

      reader.AddTransformer(new TransformFlowLink()); 

      reader.AddTransformer(new TransformComment()); 

      reader.AddTransformer(new TransformRemoteConnectorNode()); 

      reader.RootObject = this; 

      reader.Consume(file); 

      FinishTransaction("loaded from file"); 

    } 

The code above simply adds a GoXmlTransformer for each separate class that needs to be 

created from the elements in the XML and indicates the RootObject  to which the newly created 

objects should be added.  The RootObject is the ProcessDocument (a subclass of GoDocument), 

so the GoObjects created from the elements will simply be added to this GoDocument. 

Once again, the majority of the transformation process is occurring in the GoXmlTransformer 

subclasses, so we will next examine those GoXmlTransformers in more detail. 

A GoXmlTransformer has an ElementName property that specifies the XML element associated 

with the transformer.  It also has a TranformerType property that specifies the type of object 

that will be created corresponding to that element.  A GoXmlTransformer also has methods for 

the creation and initialization of the objects associated with an element.  As described earlier, 

the Allocate, ConsumeAttributes, and ConsumeBody methods will be invoked for each element 

directly contained by the root element of the XML document. 

The default behavior of the GoXmlTransformer.Allocate method is to create an instance of the 

class given by TransformerType.  If you require additional initialization not provided by the 

default (zero-argument) constructor for this class you can override this method. 

The ConsumeAttributes method reads the values of the element attributes.  If the 

IdAttributeUsedForSharedObjects property is true, GoXmlTransformer ConsumeAttributes will 

also call the Reader’s MakeShared method to register the “id” attribute of the object with the 

actual object instance it corresponds to.  Objects that have been created can then be looked up 

by calling the GoXmlReader.FindShared method with the object id of the object to be returned. 

 GoXmlTransformer has a number of methods  that are typically used within 

ConsumeAttributes to read attribtutes of different datatypes.  These methods include: 

• StringAttr 

• Int32Attr 

• SingleAttr 



• BooleanAttr 

• PointFAttr 

• SizeFAttr 

• RectangleFAttr 

• ColorAttr 

• TypeAttr 

• Int32ArrayAttr 

• SingleArrayAttr 

• PointFArrayAttr 

• ColorArrayAttr 

These methods correspond to the datatypes that can be generated from the WriteAttrVal 

method. 

If the BodyConsumesChildElements  property is true, the ConsumeBody method will iterate 

through all the child elements of this element and call ConsumeObject on each child element, 

which will in turn call Allocate, ConsumeAttributes, and ConsumeBody on the 

GoXmlTransformer associated with each of these child elements.  The object returned by 

ConsumeObject is then passed to ConsumeChild. 

Let’s look at that portion of TransformActivityNode in the Processor sample application.that is 

used to read XML. 

 

  public class TransformActivityNode : GoXmlTransformer { 

    public TransformActivityNode() { 

      this.TransformerType = typeof(ActivityNode);  

      this.ElementName = "activity"; 

      this.BodyConsumesChildElements = true; 

    } 

    public override Object Allocate() { 

      ActivityNode n = new ActivityNode(); 

      n.Initialize(null, "doc.gif", ""); 

      return n; 

    } 

    public override void ConsumeAttributes(Object obj) { 

      base.ConsumeAttributes(obj); 

      ActivityNode n = (ActivityNode)obj; 



GoDiagram 173 Copyright © Northwoods Software 

      n.ActivityType = (ActivityType)Int32Attr("type", 

(int)n.ActivityType); 

      if (n.ActivityType == ActivityType.Start || 

          n.ActivityType == ActivityType.Finish) { 

        n.Image.Name = "star.gif"; 

      } 

      n.Icon.Position = PointFAttr("xy", new PointF(100, 100)); 

      if (IsAttrPresent("size")) 

        n.Icon.Size = SizeFAttr("size", n.Icon.Size); 

      n.Text =  StringAttr("label", n.Text); 

      if (IsAttrPresent("labeloffset")) 

        n.LabelOffset = SizeFAttr("labeloffset", n.LabelOffset); 

    } 

    public override void ConsumeChild(Object parent, Object child) { 

      base.ConsumeChild(parent, child); 

      ActivityNode n = (ActivityNode)parent; 

      n.Add(child); 

    } 

  } 

The constructor in the code above specifies the element name associated with the transformer 

and type of object to be created to correspond to those elements.  In addition, it sets 

BodyConsumesChildElements to true to enable the automatic processing of child elements. 

Allocate simply calls the constructor for ActivityNode and initializes that node by passing the 

“doc.gif” file to the Initialize method of ActivityNode. 

ConsumeAttributes reads the “type”, “xy”, and “size” attributes of the “activity” element and 

sets the appropriate property values in the corresponding ActivityNode. 

ConsumeChild causes each of the child objects of the ActivityNode to be added to the 

ActivityNode after they are created and initialized. 

Finally, we need to examine how references to other objects (other than child objects) are 

created as elements are read.  Once again, we’ll look at the TransformFlowLink object to see 

how the link references to port ids are transformed into actual object references. 

The following is a portion of the ConsumeAttributes method of TransformFlowLink.   

 

    public override void ConsumeAttributes(Object obj) { 

      base.ConsumeAttributes(obj); 

      FlowLink flow = (FlowLink)obj; 

      String fromid = StringAttr("from", null); 

      if (fromid != null) { 

        GoPort from = this.Reader.FindShared(fromid) as GoPort; 



        flow.FromPort = from; 

      } 

      String toid = StringAttr("to", null); 

      if (toid != null) { 

        GoPort to = this.Reader.FindShared(toid) as GoPort; 

        flow.ToPort = to; 

      } 

  ... 

    } 

 

To find the object that corresponds to the “from” or “to” port  in the above code, we simply call 

the GoXmlReader.FindShared method passing the port id.  The port instance corresponding to 

that id is looked up and returned.   

But this assumes that the object being looked up already has been created and entered in the 

shared objects table.  Why are these assumptions safe?  In this case, we can assume that the 

object being looked up has already been created because it is a port object which is the child of 

a node.  The GoXmlWriter NodesGeneratedFirst property is true by default.  Thus GoNode 

objects (and their children) are generated before any links are created, so we can assume when 

reading in the FlowLink from the XML that the ports being referenced have already been 

created.  Furthermore, the referenced objects and their ids have already been entered into the 

table because of the behavior of GoXmlTransformer.ConsumeAttributes when 

IdAttributeUsedForSharedObjects is true.  In this case, ConsumeAttributes will call 

GoXmlWriter.MakeShared with both the id attribute and value and the newly created object 

instance, which enters the object instance and its id in the table. 

But what can we do if we don’t know if the object being referenced has already been created?  

In this case we must call the GoXmlReader.AddDelayedRef method in our implementation of 

GoXmlTransformer.ConsumeAttributes.  This will ultimately cause the UpdateReference 

method to be called in our GoXmlTransformer class, passing the attribute name, and object 

instance for the referred object.  The UpdateReference call will not occur until all the objects 

have been created.   An example of this can be found in the TransormRemoteConnectorNode 

class of the Processor sample application. 

Writing SVG 

The SVG assembly is a specific use of the XML assembly that supports the generation of SVG 

from a GoView. 

The Northwoods.Go.Svg assembly consists principally of the GoSvgWriter class (a subclass of 

GoXmlWriter) and several GoSvgGenerator classes (subclasses of GoXmlTransformer). 



GoDiagram 175 Copyright © Northwoods Software 

Using the GoSvgWriter class is extremely easy.  One can typically render an entire GoView and 

all the GoObjects it displays by writing just 3 lines of code:  

 

      // example code for generating SVG: 

      GoSvgWriter w = new GoSvgWriter(); 

      w.View = GetCurrentGoView(); 

      w.Generate(@"C:\NodeLinkDemo.svg"); 

 

The above code simply creates an instance of the GoSvgWriter, sets the GoSvgWriter.View 

property, and calls the Generate method.  The GoSvgWriter itself automatically adds all the 

standard GoSvgGenerator classes (subclasses of GoXmlTransformer) that are necessary to 

render the GoView, including the rendering of all the standard GoObjects that are displayed in 

that view.   

The developer may need to add their own GoSvgGenerator classes if they have created new 

GoObject subclasses that contain drawing code by overriding GoObject.Paint. In this case, one 

typically creates a new subclass of GoSvgGenerator and overrides the GenerateBody method to 

generate SVG elements that correspond to the drawing code in your GoObject.  Note that in 

order to simplify the generation of SVG elements, the GoSvgGenerator class has several 

methods that are similar to those found in the Graphics class.  For example, the 

GoSvgGenerator.WritePolygon method can be used in place of the Graphics.DrawPolygon 

method. 

As an example, let's say you have defined a class where you have overridden the Paint method 

as follows: 

   public class TriangleTextNode : GoTextNode { 

     . . . 

     public override void Paint(Graphics g, GoView view) { 

       base.Paint(g, view); 

       RectangleF r = this.Bounds; 

       PointF[] pts = new PointF[3]; 

       pts[0] = new PointF(r.X+3, r.Y+3); 

       pts[1] = new PointF(r.X+13, r.Y+3); 

       pts[2] = new PointF(r.X+8, r.Y+13); 

       g.FillPolygon(Brushes.Yellow, pts); 

       g.DrawPolygon(Pens.Black, pts); 

     } 

   } 

 



 If you want to get the same results in the generated SVG, you could define a generator as 

follows: 

 

   public class GeneratorTriangleTextNode : GoSvgGenerator { 

     public GeneratorTriangleTextNode() { 

       this.TransformerType = typeof(TriangleTextNode); 

     } 

    

     public override void GenerateBody(Object obj) { 

       base.GenerateBody(obj); 

       TriangleTextNode ttn = (TriangleTextNode)obj; 

       RectangleF r = ttn.Bounds; 

       PointF[] pts = new PointF[3]; 

       pts[0] = new PointF(r.X+3, r.Y+3); 

       pts[1] = new PointF(r.X+13, r.Y+3); 

       pts[2] = new PointF(r.X+8, r.Y+13); 

       WritePolygon(Pens.Black, Brushes.Yellow, pts); 

     } 

   } 

Note how the call to base.GenerateBody corresponds to a call to base.Paint, and how the call to 

WritePolygon corresponds to calls to Graphics.FillPolygon and Graphics.DrawPolygon. 

To add this new GoSvgTransformer, the previous sample code would be modified as follows: 

 

      // example code for generating SVG: 

      GoSvgWriter w = new GoSvgWriter(); 

 w.AddTransformer(new GeneratorTriangleTextNode()); 

      w.View = GetCurrentGoView(); 

      w.Generate(@"C:\NodeLinkDemo.svg"); 

 

The SVG generated by GoSvgWriter not only defines a static image of the diagram, but also 

defines scripts and additional controls that can provide dynamic behavior as well.  These 

include: 

• Selection 

• Tool Tips 

• Hot Links (hrefs) 

• Panning and Zooming 



GoDiagram 177 Copyright © Northwoods Software 

Of course, these additional behaviors can be turned on or off, customized, or entirely replaced 

by the developer.  They are controlled by various properties and methods of the GoSvgWriter 

class. 

The boolean Scripting property determines whether any scripts are generated at all.  If this 

property is false, no scripts are generated and no dynamic behavior is possible. 

The ScriptFile property determines what scripts are generated.  By default, ScriptFile is an 

empty string, which causes GoDiagram’s standard SVG JavaScripts to be generated.  If this value 

is not empty, it is assumed to be a URL to a file containing the scripts that will be included by 

reference. 

The boolean ToolTips property determines whether or not tool tips are displayed when the 

mouse hovers over an SVG element representing a GoObject.  By default, ToolTips is true, so 

any GoObject that overrides the GoObject.GetToolTip method will display that tool tip in the 

generated SVG. 

The GetHref method takes a GoObject argument and can be overridden to return a URI.  When 

a user clicks on an SVG element that corresponds to such a GoObject, the resource associated 

with that object’s URI is displayed by the SVG user agent. 

The boolean PanAndZoomControls property determines whether or not a control is created in 

the generated SVG that the user can interact with to pan (scroll) or zoom (scale) the digram.  By 

default, PanAndZoomControls is true.  This control appears as follows: 

 

By clicking on the points of the control the user can pan in that direction.  By clicking on the + or 

- the user can zoom in or out.  By clicking on the square in the center, the user can return to the 

original zoom and pan values.  By clicking on the numeric scale value, the scale is reset to 1. 

Other more general script customizations can be easily accomplished by overriding the 

GenerateScript method.  By calling the base GenerateScript method, you can cause all the 

standard GoDiagram SVG JavaScript to be generated.  By calling WriteStartElement, 

WriteTextBody, and WriteEndElement you can then add your own script functions to extend 

these standard scripts.  In particular, you can generate your own InitializeForms and or 

UpdateForms script functions.  The InitializeForms script function will be called once to allow 

you to perform any initialization.  The UpdateForms function  script function will be called after 

a mouse up operation to allow you to perform an operations in response to user mouse click.  

For example, the following code will generate JavaScript that you can modify to do anything you 



want in response to a mouse click. 

 

    protected override void GenerateScript() { 

      if (!this.Scripting) return; 

      base.GenerateScript(); 

      WriteStartElement("script"); 

      WriteTextBody(@" 

function UpdateForms() { 

  // find a selected object 

  for (var id in goSelection) { 

    var obj = goGetSelectable(id); 

    // Do whatever you like with the selected objects-- 

    // the following displays the object id. 

    alert('object id = ' + id); 

    } 

  } 

"); 

      WriteEndElement(); 

    } 

  } 

Note that the sample code above is writing JavaScript that is simply enclosed in a verbatim 

string literal.  The UpdateForms() JavaScript function will be called by the standard GoDiagram 

JavaScript generated by the base.GenerateScript() call.   

A more complex example of script customization can be found in the NodeLinkDemo sample 

application.  In this sample a property sheet is displayed in response to clicking on an object.  In 

your application you will probably need to make sure additional information is generated for 

each node so that your JavaScript code will be able to take the actions desired, such as 

displaying information for a node or invoking some action on a server. 

Writing PDF 

The PDF assembly supports the generation of Adobe PDF from a GoView. 

The Northwoods.Go.Pdf assembly consists principally of the GoPdfWriter and a 

GoPdfGenerator class (and GoObject specific GoPdfGenerator derived classes such as 

GoShapeGenerator). 

Using the GoPdfWriter class is extremely easy.  One can typically render an entire GoView and 

all the GoObjects it displays by writing just a few lines of code:  

 
  GoPdfWriter writer = new GoPdfWriter(); 



GoDiagram 179 Copyright © Northwoods Software 

  writer.View = goView1; 
  GoPdfMetadata meta = new GoPdfMetadata() { Title = "A Diagram",  
     Author = new List<string>() { "Author1", "Author2" },  
     Producer = "The Producer" }; 
  writer.RegisterStandardGenerators(); 
  writer.Generate(path); 

 

The above code simply creates an instance of the GoPdfWriter, sets the GoPdfWriter.View 

property, sets the PDF metadata, registers standard generators and calls the Generate method.  

The RegisterStandardGenerators adds all the standard GoPdfGenerator classes that are 

necessary to render the GoView, including the rendering of all the standard GoObjects that are 

displayed in that view.   

Additional GoPdfWriter properties that control PDF generation include PageSize, Padding, 

Margins, Landscape, RendersBackground, RendersFullPage, RenderTemporaryObjects, 

RendersShadows, RendersGrid and Scale.  The GoPdfWriter .Objects property can be set if you 

want to limit the objects that are rendered (for example, the GoView.Selection).   See the API 

reference for details.   

 



9. PERFORMANCE HINTS 

When there are only thousands of objects in a document, performance is rarely a problem.  

However, when dealing with many thousands of objects, the programmer should be aware of 

performance issues. 

Usually the bottleneck in performance is GDI+ drawing speed.  The use of partial transparency, 

linear gradients, or path gradients will definitely consume more resources and slow 

responsiveness.  Dashed or dotted pens also cost drawing time, although not as badly as fancy 

brushes.  The use of grids, particularly with small cell sizes, can impose a significant painting 

cost. 

Use the simplest kind of GoShape that will serve your purpose.  Although it may be very 

convenient to use a GoDrawing shape of a particular GoFigure, employing thousands of such 

shapes will consume both space and time. 

Don't add an object, particularly complex objects such as groups, to the document until the last 

possible moment—as objects are modified or as objects are added to a group, no views or undo 

manager will be notified until after the object/group is added to the document. 

If you need to change the bounds of an object, it is more efficient to change it once than to do 

so in several steps.  For example, if you want to stretch the left edge of a rectangle further to 

the left while keeping the right edge at the same X position, you might do: 

  aRect.Left -= 20 

  aRect.Width += 20 

This may get you the right result, but will involve two updates to the object, to its parent group, 

and to its document and views.  Instead 

  aRect.Bounds = new RectangleF(aRect.Left-20, aRect.Top, 

                                aRect.Width+20, aRect.Height) 

will avoid the extra updates.  Furthermore it is more likely to avoid problems with the layout of 

children in groups, because in the two-step procedure the GoGroup.LayoutChildren method 



GoDiagram 181 Copyright © Northwoods Software 

might adjust everything based on the fact that the rectangle is (temporarily) no longer as far 

right as it used to be. 

Speaking of LayoutChildren, that method can get called a lot.  Each time any child’s Bounds 

changes, or when a child is added or removed from the GoGroup, will result in a call to 

LayoutChildren.  When you have a node with hundreds of children, you may find it necessary to 

follow the convention that LayoutChildren do nothing when GoObject.Initializing is true.  That 

will allow you to initialize or make wholesale changes to your group without performing any real 

work in your LayoutChildren override, until your code has set Initializing back to false and then 

calls LayoutChildren(null) explicitly to make sure everything is in its place. 

Support for undo and redo slows down editing because the undo manager must listen for 

document events and construct edits for each change.  By default a document does not have an 

undo manager, so you should set GoDocument.UndoManager only when needed. 

Those undo edits can take up a lot of memory.  Depending on your application design, 

sometimes you may wish to call GoUndoManager.Clear to save on virtual memory occupied by 

all of the edits.  This is traditionally done when the document is saved, but you may implement 

your own policies.  You can also change how much is saved by overriding 

GoUndoManager.SkipEvent. 

If you want to limit the amount of memory consumed by the GoUndoManager due to the 

number of transactions that occur, you can set the MaximumEditCount property.  This, 

however, does not limit the amount of memory used by each CompoundEdit. 

Dragging performance can be slowed by setting GoView.DragsRealtime to true.  However, if 

you have to have that property be true to get the desired interactive feedback during dragging, 

but you have a lot of links that are Orthogonal and AvoidsNodes, you can set 

GoView.DragRoutesRealtime to false.  That will avoid the rerouting of links during the drag, 

only routing each link once at the end of the drag. 

If you have GoView.ObjectGotSelection and GoView.ObjectLostSelection event handlers that 

are slow because they need to update other Controls, you may notice that selecting or 

deselecting a lot of objects takes a lot of time.  We suggest that you additionally implement 

GoView.SelectingStarting and GoView.SelectionFinished event handlers.  The former should 

disable updating; the latter should re-enable updating and make sure everything is up-to-date. 

Reading and writing XML files can be very easy to implement when using 

GoXmlBindingTransformer.  However, its use of reflection and its needing to interpret property 

paths does slow it down compared to the identical functionality implemented using a custom 

GoXmlTransformer. 



10. DEPLOYMENT AND LICENSING 

Note: Licensing and deployment has changed completely in 5.0 from earlier versions. 

Licenses.licx is no longer required. 

Before you can distribute your application, you will need to purchase a developer’s license for 

GoWin, install a development license key on your development machine, and insert a run-time 

license key assignment statement into your application constructor.  The GoDiagram License 

Manager will help you perform these steps.  You can find this application in the Start Menu or in 

the bin subfolder of the installed GoDiagram kit in your Documents folder. 

 

You can purchase a development license at our web site: 

http://www.nwoods.com/sales/index.html. 

You will be sent an acknowledgement e-mail that includes your order number.  Please make 

sure that you will always receive e-mail from nwoods.com. 

Once you have your order number, run the GoDiagram License Manager on your development 

machine and click on the “Request a License” button.  This will take you to our web site where 

you can enter your e-mail address, the order number, and which component your application is 

http://www.nwoods.com/sales/index.html


GoDiagram 183 Copyright © Northwoods Software 

using.  You will be sent an e-mail containing a license key for your particular development 

machine. 

If you are unable to connect your development machine to the internet, you can go to: 

http://www.nwoods.com/app/activate.aspx?sku=go and enter the same information plus the 

name of your login account and the name of your development machine. 

Once you get the license key e-mail, click on the “Install a License” button in the GoDiagram 

License Manager.  Copy the license key, which is shown in bold in the license key e-mail 

message, into the License Manager’s text box.  If you pasted a valid license key, the “Store into 

Registry” button becomes visible and you can click it. 

 

When your machine has a development license installed, you can generate run-time licenses at 

your convenience.  Each application that you want to distribute will need a separate run-time 

license.  Start the GoDiagram License Manager and click on the “Deploy an Application” button. 

Because the run-time license is tied to the name of the application, you will need to enter the 

application name.   

For WinForms, this is the name of your managed EXE or DLL (without a directory path or the file 

type) . 

 

http://www.nwoods.com/app/activate.aspx?sku=go


You can then paste the code from the clipboard into your application.  It will look something 

like: 

  // This is a license for Northwoods.GoWin version 5.0 (or earlier) 

  // Put the following statement in your MyApplication application constructor: 

  Northwoods.Go.GoView.LicenseKey = "f9fWgfq7Q3F … TUUMbhBEbSZ+N0nZo="; 

 

This line of code must execute BEFORE the first GoView (or GoPalette) is created. 

For WinForms applications, this is typically done in the main form’s constructor before the call 
to InitializeComponent().   

 

After you re-compile your application, you should be able to deploy it successfully to as many 

machines as you wish. 

Remember to generate and use a new run-time license key if you change the name of your 

application assembly or if you upgrade to a newer major or minor version of the GoDiagram DLL.  

The baselevel version number does not matter, so for example, upgrading a DLL from m.n.1 to 

m.n.2 can be performed at any time using the same license key. 

 

 


