

JGoInstruments™
 Instruments Library

for JGo™

User Guide

This guide provides information on using the classes provided in the
JGoInstrumentsTM library that is an add-on to JGoTM.

January 2008

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060
http://www.nwoods.com/go
mailto:JGo@nwoods.com

 ii

Copyright © 1999-2008 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise without the prior written permission of the
publisher.

Northwoods Software Corporation makes no representations that the use of its products
in the manner described in this publication will not infringe on existing or future patent
rights, nor do the descriptions contained in this publication imply the granting of licenses
to make, use, or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized
only pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any
errors that may appear in this publication. The information in this publication is subject to
change without notice.

The following are trademarks of Northwoods Software Corporation: Northwoods
Software, GoDiagram, GoLayout, GoInstruments, JGo, GO++, Sanscript, Flowgram, the
Northwoods logo, and Fully Visual Programming.

All other trademarks and servicemarks are property of their respective holders.

 1

PREFACE

Purpose of this guide:
This guide provides an overview of JGoInstruments, a Java class library
containing classes used to implement dials, gauges or meters in a JGo document.
JGoInstruments is designed for Swing applications.

For more detailed information about the types, classes and interfaces, see the
JavaDoc-produced reference guide.

Who should use this guide:
This guide is intended for application programmers using the JGoInstruments
library or the InstrumentDemo sample application to incorporate
dials/gauges/meters or similar functionality in their JGo Swing application.

This manual assumes you are familiar with Java, Swing and JGo programming
concepts and terminology. If you are not, please refer to your Java/Swing and
JGo documentation.

 2

1. INTRODUCTION

The JGoInstruments library is a set of classes built to display numeric values in
a graphical manner as part of JGo applications. The classes implement
JGoObjects that display a scale with regular markings and labels and they
implement JGoObjects that indicate a value on a scale.

The objects can be customized and combined to present many different kinds of
appearances. In the real world, depending on the industry, such things are called
meters, dials, or gauges. Because there is so much customization that can be
done, JGoInstruments does not provide any prebuilt instruments. The
InstrumentDemo sample application, however, does define many such objects for
various purposes and with various appearances and behaviors.

 3

2. THE INSTRUMENTDEMO SAMPLE APPLICATION

Running the InstrumentDemo sample application is a good way to become
familiar with the functionality built in the sample using the JGoInstruments
classes.

Most of the objects you see are instances of subclasses of the Meter class. Each
Meter has a Background shape, a Scale, an Indicator, and a text Label.

The background shape defaults to a gray rectangle, but you can easily change the
properties of the JGoRectangle, or replace it with an instance of a different
JGoObject class.

The scale is an AbstractGraduatedScale. It has a line drawn from the scale’s
Minimum value to the Maximum value, along with tick marks that cross that
path at regular value intervals, and with labels that display the value for the tick
marks. The Meter also has Minimum and Maximum properties; these are just
the scale’s properties exposed by the Meter for convenience.

The indicator is an AbstractIndicator. There are various kinds of
AbstractIndicators, but they all display a value on the scale by drawing
something that intersects or ends at the scale at the point representing that value.
The Value of the AbstractIndicator is also exposed as the Value of the Meter,
for convenience in getting and setting the value.

The label is often a caption, but can be used for other purposes such as displaying
the current value in a textual format.

Click on an object to select it. If it is a meter, the current value will be displayed
in the “Meter Value” text box. You can also modify the value by typing in this
text box and then typing Enter or clicking elsewhere to move the focus out of that
text box. Of course, modifying a meter value using the text box may be difficult
to do when the value is continually changing while you type. You can click on
the “Stop Animation” button to stop the timer that is modifying the meter values.

 4

You can also modify the values of many meters interactively when the pointer is
near the place where the indicator is indicating the current value. The cursor
changes to a “Hand” cursor to inform the user that they can modify the value by
direct manipulation. Note that doing such direct manipulation does not
necessarily cause the meter to be selected in the view, so the “Meter Value” text
box at the top of the application might not show the value of what you are
changing.

You will notice that some of the meters are continually changing values. There
are two timers that are running: one updates the clock and one updates some of
the other meters. The timers are part of the example application—for efficiency,
each meter is not responsible for creating its own Timer.

The InstrumentDemo application also makes all of the object properties visible
by means of an Inspector window. Click on the “Properties” button, or press the
F4 key, to make the “Properties” window visible. These property values might

 5

not remain up-to-date as the application runs. However, you will be able to
experiment interactively by changing many of the interesting property values,
such as the ones involving the tick marks or tick labels on the scale.

You can more directly manipulate scales by selecting and resizing the
GraduatedScaleLinear, GraduatedScaleElliptical, and Ruler instances that
are also present in the view. (You may need to scroll to the right to see them.)
Note how scales automatically skip drawing the minor ticks when they become
packed too close together.

The ruler, which is implemented by a subclass of GraduatedScaleLinear,
maintains a constant distance between the tick marks by continuously adjusting
the Maximum value according to the Length of the scale. You can double-click
on the ruler to toggle the ruler between metric and English units. Please note that
the ruler currently assumes there are per 96 pixels per inch. Your monitor or
display may of course magnify the ruler quite arbitrarily.

 6

The clock at the top left corner of the document normally displays the current
time. However, you can speed up the clock, stop it, or reset the clock to the
current time by using the buttons at the top of the application. The Clock
example class is what implements this functionality. This is a subclass of the
Meter class where the Background object is actually a GIF image. As you
expand the clock by resizing you will notice that the image will get fuzzy due to
the stretching of the image. Resizing the other meters, however, leaves them all
crisp because they are do not use Images.

The thermometer at the left side of the document is actually a meter that has an
additional scale in it. The regular scale displays Celsius; the extra scale displays
Fahrenheit. The scales have exactly the same StartPoint and EndPoints, but the
Celsius scale only displays ticks on the right side and the Fahrenheit scale only
displays ticks on the left side.

 7

A simple manufacturing facility consisting of tanks and pipes is shown towards
the bottom left corner of the document. Fluid flows out of tanks through the
pipes that come out the bottom; fluid flows in through pipes coming in the top.
The capacity of the tanks is 1000 units; the current volume is shown both with a
bar indicator as well as textually. Furthermore you can change a tank value
either by dragging the bar indicator or by editing the text value in-place. A text
label on each pipe shows the maximum flow through the pipe; this too the user
can edit in-place.

 8

3. THE JGOINSTRUMENTS LIBRARY

The JGoInstruments library principally consists of the basic
AbstractGraduatedScale and AbstractIndicator classes and the Meter class
that is an area—a collection of objects including a scale and an indicator.

In your application you will normally define, instantiate, and initialize subclasses
of Meter. Your Meter subclass is where you will create and customize an
AbstractGraduatedScale, typically an instance of GraduatedScaleLinear or
GraduatedScaleElliptical, and an AbstractIndicator, typically an instance of
IndicatorNeedle, IndicatorBar, IndicatorBarElliptical, IndicatorSlider,
IndicatorSliderElliptical, or IndicatorKnob. Your Meter subclass is also
responsible for making sure the sizes and relative positions of the parts of the
area are the way you would like them to be. And you can easily add objects to
your custom meter to display additional information.

AbstractGraduatedScale
A graduated scale displays a range of values along a line. The GraduatedScale
interface defines these values to be double-precision floating-point numbers.
There are methods for getting a Point2D.Float position in document coordinates
for a value, and for getting a value for a given point. The extreme values are
specified by the Minimum and Maximum properties.

The standard implementation of GraduatedScale is the abstract class
AbstractGraduatedScale. This class inherits from the JGoDrawable class. It
draws a line along a path with small crossings (“ticks”) marking intermediate
value points. One end of the path represents the Minimum value and the other
end represents the Maximum value.

There are a number of properties that govern the appearance of tick marks. Tick
marks can be either major or minor; major tick marks are meant to mark more
significant values at regular intervals. Major tick marks are typically bigger, in
width or in length, and can be labeled with the value that they represent.

 9

When the main path is too short to hold so many tick marks, only the major tick
marks are drawn:

The values and frequency of tick marks are governed by two properties:
TickBase and TickUnit. The TickBase property is normally the first desired
major tick mark, and that is often the same as the Minimum property.
Additional tick marks are positioned at each point along the path of the scale that
represents a multiple of the TickUnit beyond the TickBase.

Tick Mark Values
Tick marks become major every TickMajorFrequency marks. Thus a
Minimum of 0, a Maximum of 77, a TickBase of 0, a TickUnit of 2.5, and a
TickMajorFrequency of 4 results in a scale that might appear as:

Changing the Minimum to –23 results in:

Changing the TickBase to 1.2 results in:

Changing the TickUnit to 5 results in:

Changing the TickBase back to 0 and the TickMajorFrequency to 5 results in:

 10

Tick Mark Appearance
The appearance of the tick marks is controlled by a number of different
properties: TickColor, TickWidth, TickLengthLeft, TickLengthRight,
TickMajorWidth, and TickMajorLengthRatio.

The default values for these tick properties results in a scale that might appear as:

By default major tick marks are twice as long as minor ones. By changing
TickMajorLengthRatio to 1.2, for example, you get:

Notice that the major tick marks are wider than the minor ones. Changing
TickMajorWidth to 1 results in:

As the scale’s path is drawn from the Minimum value to the Maximum value,
there are two sides: left and right. You can control the length of each tick mark
to either side. For example, changing the default scale’s TickLengthRight
property to 0 results in:

Major Tick Mark Labels
When the TickLabels property is true (as it is by default), the value at each
major tick mark is drawn as well. The scale draws each label by using an
instance of JGoText that is held as the value of the LabelTemplate property.
The scale calls the getLabelString method to compute the text to be displayed
and it calls the getLabelCenter method to compute the middle position for the
label. The paintLabel method then sets the LabelTemplate’s JGoText’s Text
property to the label text string, sets the JGoObject’s center position of the text
object, and then paints the text object.

Thus all of the JGoText properties can be set to affect the appearance of each
label. For example, you may wish to set the LabelTemplate’s JGoText’s Bold

 11

property to true and JGoText’s FontSize to 12. Remember that the appearance
can be affected for the one shared JGoText object, but not any editing behavior,
because the user may not modify any label.

The LabelDistance property controls the distance from the center of the label.
The default value is 10. Changing this property to 20 results in:

You can see that the labels are now much further from the tick marks. If you
have a vertical scale and large values (i.e. many digits of precision) you will need
to increase the LabelDistance to keep the numbers from overlapping with the
tick marks.

Labels can also be positioned on the left or on the right of the scale. A value for
the LabelStyle property of GraduatedScale.LabelStyleRight results in:

A value of GraduatedScale.LabelStyleAlternateStartRight results in:

You can easily change the formatting of the major tick label values by setting the
LabelFormat property. This is a Java formatting string; the default is
“{0,number}”. When the values are very long, such as when the TickBase is set
to 1.23456789, you will often get overlapping labels:

But by setting LabelFormat to “{0,number,#.##}”, specifying one decimal
place, the result appears as:

 12

Finally another way of reducing the chance of label overlap, in addition to using
alternating LabelStyle and a truncating LabelFormat, is to reduce the frequency
at which major ticks have labels. The value of LabelFrequency is normally 1,
meaning every major tick has a label. But set it to 2 and you can set the
LabelFormat to display more precision, such as “{0,number,#.#####}”, and still
not have overlap:

GraduatedScaleLinear
The above examples were all screenshots of a GraduatedScaleLinear, a scale
that has a path that is a straight line.

The distinguishing properties of a GraduatedScaleLinear are the StartPoint
and EndPoint properties. These coincide with the resize handles:

GraduatedScaleElliptical
The other kind of scale is GraduatedScaleElliptical, a scale that has a path
along an ellipse.

The ellipse is determined by the BoundingRect of the scale and the StartAngle
and SweepAngle properties.

 13

In the above example, the StartAngle is 160 and the SweepAngle is 340. The
SweepAngle may be negative, to have the path go in the counter-clockwise
direction.

AbstractIndicator
An indicator displays a particular value on a graduated scale. The abstract
AbstractIndicator class has a Value property and a Scale property.

But there are many different ways for an indicator to do its job. The primary
ways provided by JGoInstruments are: needle, bar, slider, and knob.

Since the AbstractIndicator class inherits from JGoDrawable, you can
customize the appearance by setting the Pen and/or Brush properties.

Needle
A needle indicator, IndicatorNeedle, is basically a simple shape that is drawn
from the PivotPoint to the point on the Scale representing the indicator’s Value.

IndicatorNeedle supports a number of basic needle shapes.

The following example Meter shows an IndicatorNeedle of style
IndicatorNeedle.StyleLine, with a Value of zero, on a GraduatedScaleLinear
scale. The indicator’s Pen is JGoPen.red.

This next example Meter shows an IndicatorNeedle of style
IndicatorNeedle.StyleKite, with a Value of about 66, on a
GraduatedScaleElliptical scale. The indicator’s Thickness is 12 and its Brush
is JGoBrush.orange. The scale’s TickColor and LabelTemplate’s TextColor
are orange too.

 14

Bar
A bar indicator, IndicatorBar, displays as a rectangular or annular bar drawn
from the scale’s Minimum value to the indicator’s Value. Its width (across its
path) is specified by the Thickness property. It can also be shifted in position,
relative to the scale’s minimum value point, by setting the StartOffset property.

The following Meter screenshot shows an IndicatorBar with a
JGoBrush.yellow brush and a Value of 30.

For elliptical scales, you need to use the IndicatorBarElliptical class. The
following example shows such a bar with a Thickness of 6. The BoundingRect
of the indicator have been inflated by half the Thickness to cause the bar to be
centered on the elliptical path of the scale.

The IndicatorBar class also supports painting parts of the bar in different colors.
A Phase is a structure that holds a Color and starting and ending values, Min
and Max. You can add several Phases to an IndicatorBar. When the
indicator’s Value is less than a Phase’s Min value, that phase is not drawn.
When the Value is between the Min and the Max, the part of the phase from the
minimum up to the value is drawn. When the Value is greater than the Max, the
whole phase is drawn.

The IndicatorBar keeps Phases in an ordered list, so that if there is any overlap,
later phases will be drawn on top of earlier ones. Any gaps between the phases
will be filled in by the standard bar, which is actually drawn first.

In the MultiPhaseMeter example, three Phases have been added to a regular
IndicatorBar: green from 10 to 40, yellow from 55 to 70, and purple from 80 to
95. The indicator’s Brush is the default: JGoBrush.red.

 15

The MultiPhaseMeterElliptical example also has three Phases: green from 0 to
55, yellow from 55 to 75, and red from 75 to 100. Note the line at 100, which is
caused by the indicator’s Pen (the default black pen) to demarcate the end of the
third phase.

Indicators need not have changing values, so you can use IndicatorBars in a
static manner to mark regions of a scale. The GaugeMeter example creates an
additional IndicatorBar, with two additional phases (green and yellow), that has
a Value equal to the Maximum of the Scale.

 16

Slider
A slider indicator, IndicatorSlider, is basically like a fancy tick mark. As a
regular JGoDrawable, you can set its Pen and Brush. You can control its size
by setting the Dimensions property. The dimension’s “width” controls how far
off the path of the scale the slider should extend; the “height” controls how long
it is along the path.

IndicatorSlider supports different pre-defined shapes that the slider can take.
The following examples use IndicatorSlider.StyleTriangles and
IndicatorSlider.StyleBar. As with IndicatorBar, there is a separate
IndicatorSliderElliptical class to work with elliptical scales.

Knob
A knob, IndicatorKnob, is always elliptical, and should normally be circular.
The value is shown by a thin triangle, whose color is determined by the
MarkerColor property.

The KnobMeter example class uses an IndicatorKnob, but customizes its
Brush to be a RadialGradientBrush (not yet implemented) to give a
lighting/reflection effect.

 17

Quantization
When the AbstractIndicator’s Value property is set, the value is first passed to
the validValue method to ensure its validity. By default it will make sure the
value is between the scale’s Minimum and Maximum.

In addition, validValue will call the quantizeValue method to allow the value to
be forced to take discrete values. Although you can override quantizeValue to
get any behavior you like, three properties cover the most common cases:
Quantized, QuantizeBase and QuantizeUnit. The latter two properties behave
in a manner similar to AbstractGraduatedScale’s TickBase and TickUnit
properties. The standard implementation of quantizeValue will make sure the
value is QuantizeBase plus a multiple of QuantizeUnit, if Quantized is true.
Quantized is false by default.

Meter
Meter is the base class for most meters, that is, areas consisting of four child
objects: a Background, a Scale, an Indicator, and a Label. The Meter
constructor does not create any child objects. The initialize method is
responsible for that. When you allocate a Meter, be sure to call the initialize
method. When defining a subclass of Meter, perform any additional
initialization in an override of the initialize method, after calling the super
method.

The default implementations of createScale and createIndicator do nothing but
return null, so these two methods are normally overridden to create and initialize
some kind of AbstractGraduatedScale and some kind of AbstractIndicator.
You can create instances of Meter and do the creation and assignment of the
scale and the indicator explicitly, but it is more common to define a class to
inherit from Meter so that you can keep together the code for creating and for
laying out the meter’s child objects.

Meter.layoutChildren is implemented to set the BoundingRect of the Scale and
of the Indicator to be a rectangle that fits inside the Background’s
BoundingRect leaving room for the Insets. These margins default to a size of
10x10, but you may want to increase them depending on where the scale labels
are and how large they are.

The layoutChildren method also positions the Label’s LabelRelativeSpot to be
at the LabelSpot compared to the Background. The default values for those
spots are JGoObject.BottomMiddle, causing the Label to be placed inside the
Background centered along the bottom edge. Specify a LabelRelativeSpot of
JGoObject.TopMiddle to position the Label outside of the Background,
underneath it.

 18

Typical subclasses of Meter will override layoutChildren to do nothing if
Initializing is false, call the base method, and then do any additional adjustments
of the indicator and/or scale based on the their new sizes and positions.

For the convenience of classes that inherit from Meter, there is an Orientation
property that can be used by those kinds of meters that want to be vertical or
horizontal. The standard implementation of Meter’s methods does not use the
Orientation property at all.

For your convenience in referring to the various properties of the Indicator and
the Scale, Meter exposes many of their properties as its own.

MultipleIndicatorMeter
It is moderately common to have a Meter with more than one Indicator. The
MultipleIndicatorMeter class is designed to keep track of a list of
AbstractIndicators. The standard Meter’s Indicator property is overridden to
refer to the first AbstractIndicator in that list.

An example of this is the MultiBarMeter. The example has three
IndicatorBars, of different colors, each controllable by the user.

Another example is the Clock. A Clock has three indicators, the different
“hands”.

Each hand has different sizes and appearances, of course. But additionally they
are defined as classes inheriting from IndicatorNeedle so that they can override

 19

the validValue method. This is what implements the automatic behavior of
“wrapping” around when reaching 60 (seconds or minutes).

Furthermore the hour hand can use the same 0-60 scale even though it wraps
around twice to show 1-12 hours. This is accomplished internally by multiplying
the hour value by 5 to get the actual indicator value.

