

JGoLayout™
Automatic Layout Library

for JGo™

User Guide

This guide provides information on using the classes provided in the JGoLayoutTM library
that is an add-on to JGoTM.

January 2005

Northwoods Software Corporation
142 Main St.

Nashua, NH 03060
http://www.nwoods.com/go
mailto:JGo@nwoods.com

 ii

Copyright © 1999-2005 Northwoods Software Corporation

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the
prior written permission of the publisher.

Northwoods Software Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any errors that
may appear in this publication. The information in this publication is subject to change without
notice.

The following are trademarks of Northwoods Software Corporation: Northwoods, JGo, GO++,
GoDiagram, Sanscript, Flowgram, the Northwoods logo, and Fully Visual Programming.

The following are third-party trademarks:

Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All other trademarks and registered trademarks are property of their respective holders.

 iii

CONTENTS
Preface ... v
1. Introduction... 1
2. The Layout Demo Sample Application... 5

Introduction to the “Layout Demo” Sample Application 5
Layout Demo Menus 5
Layout Demo Quick Start 7

Force-Directed Auto-Layout ... 7
Layered-Digraph Auto-Layout .. 10

3. JGo Layout Concepts .. 13
Design Philosophy 13
JGoNetwork, JGoNetworkNode, and JGoNetworkLink 13
JGoAutoLayout 14
JGoForceDirectedAutoLayout 15

JGoLayeredDigraphAutoLayout ... 15
4. Quickly Adding Layout to Your JGo Application.. 19
5. Advanced Options.. 21

JGoForceDirectedAutoLayout .. 21
JGoLayeredDigraphAutoLayout ... 25
AutoLayout and SubGraphs ... 29

PREFACE

Purpose of this guide:
This guide provides an overview of the classes available in the JGo Layout class library
and instructions for incorporating auto-layout functionality into JGo applications.

For more detailed information about the classes and members in the JGo Layout class
library, see the JavaDoc-produced API reference.

Who should use this guide:
This guide is intended for application programmers using the JGo Layout library.

Structure of this guide:
This guide is organized as follows:

• Introduction – summarizes the capabilities of the JGo Layout software.

• The Layout Demo Sample Application – introduces the Layout Demo sample
application.

• JGo Layout Concepts – describes the overall design of the JGo Layout classes.

• Quickly Adding Layout to Your JGo Application – describes the minimal additions
required to add JGo Layout functionality to a JGo application.

• Advanced Options – summarizes some of the most useful options available in the
JGo Layout classes.

Assumptions:
This manual assumes you are familiar with Java and JGo programming concepts and
terminology. If you are not, please refer to your Java or JGo documentation or online
help.

 1

1. INTRODUCTION

The JGo Layout class library is a set of classes built to interface with the JGo class
library and provide support for automatically laying out graphs (node & arc diagrams).

Although the classes in the JGo Layout class library are not subclasses of classes in the
JGo class library, many aspects of the layout routines take advantage of the fact that JGo
objects are targets of the layout.

JGo Layout currently supports two general auto-layout routines: a force-directed auto-
layout routine and a layered-digraph auto-layout routine. The force-directed auto-layout
routine is intended for use with all types of graph – undirected graphs as well as directed
graphs. The layered-digraph auto-layout routine is intended specifically for use with
directed graphs.

 Figure 1 and Figure 2 illustrate a sample graph before and after applying force-directed
automatic layout.

Figure 1. Sample graph before layout

 2

Figure 2. Sample graph after Force-Directed Auto-Layout

Figure 3 and Figure 4 illustrate a sample graph before and after applying layered-digraph
automatic layout.

Figure 3. Sample graph before layout

 3

Figure 4. Sample graph after Layered-Digraph Auto-Layout

The JGo Layout class library is designed to be flexible and extensible. All Layout
objects are easily subclassed for application-specific specialization. New Layout objects
can be easily added to the existing framework.

 5

2. THE LAYOUT DEMO SAMPLE APPLICATION

Introduction to the “Layout Demo” Sample Application
“Layout Demo” is the primary sample application for the JGo Layout library.

The goal of Layout Demo is to demonstrate as many features of the JGo Layout library as
possible, but to remains simple enough so that most of what you see in Layout Demo are
fundamental capabilities of JGo Layout.

Note: Layout Demo is not suitable as a sample application for learning about JGo.
Layout Demo takes advantage of JGo primarily as a framework for drawing graphs.

Layout Demo Menus
This section describes the Layout Demo menu commands.

File Commands Description

New Opens a new DemoDocument, which is a simple class,
derived from JGoDocument.

Open Opens an existing DemoDocument using a binary file
format.

Close Closes the active DemoDocument.

Save, Save As Saves the active DemoDocument using a binary format.

Print Printing support provided by JGo.

Exit Exits Layout Demo

 6

Edit Commands Description

Cut Copies the current selection from the document to the
clipboard, while removing the selection from the
document.

Copy Copies the current selection from the document to the
clipboard.

Paste Pastes a previously cut or copied selection from the
clipboard.

Delete Deletes the selected items.

Select All Selects all items.

View Commands Description

Zoom Normal Sets the current scale to 100%.

Zoom In Adds 10% to the current scale.

Zoom Out Subtracts 10% from the current scale.

Zoom To Fit Sets the current scale to the largest scale such that the
entire document is visible.

Toggle Grid Turns the background grid on or off.

Toggle Arrowheads Turns arrowheads on links on or off.

Insert Commands Description

Basic Node Opens a dialog box for creating a new node. The dialog
prompts for the number of ports, an optional node label,
and whether the ports should be oriented horizontally or
vertically.

 7

Layout Commands Description

Random Auto-Layout Performs a randomizing auto-layout on the document.

Force-Directed Auto-
Layout

Performs a force-directed auto-layout on the document.

Layered-Digraph Auto-
Layout

Performs a layered-digraph auto-layout on the document.

Help Commands Description

About Opens a message box with information about the
LayoutDemo application.

Layout Demo Quick Start
This section provides a quick introduction to the Layout Demo application and the auto-
layout routines.

Force-Directed Auto-Layout
First, we examine the force-directed auto-layout routine. To begin, create a number of
one-port nodes using the Basic Node menu item or by double clicking on the
background. Move them around and link them together into a cycle to create a graph
similar to that in Figure 5. Notice that the nodes have an initial color of red.
LayoutDemo uses the color of a node to demonstrate some of the customizable aspects of
the Layout routines. Double-click anywhere inside of a node to change its color.

 8

Figure 5. Example 1

Nodes can be linked together by clicking on a port and dragging towards another port. A
successfully created link will draw a directed arrow from one node to the other.

After creating a graph, choose the Force-Directed Auto-Layout menu item. This will
bring up the dialog box illustrated in Figure 6.

Figure 6. Dialog box for Force-directed Auto-Layout

Examine the different options available for the force-directed auto-layout, but leave the
default values and click OK. The graph will animate as it moves towards its final
position, similar to that shown in Figure 7.

 9

Figure 7. Result of applying Force-Directed Auto-Layout to Example 1

The force-directed auto-layout routine works by viewing a graph as a system of bodies
with forces acting between the bodies. The routine tries to move each node into a
position such that the sum of the forces acting on the node is zero. In particular, nodes
are replaced by electrically charged particles that repel each other and links are replaced
by springs that connect the particles.

The different options available for the force-directed auto-layout allow you to adjust the
characteristics of the particles and springs that determine the layout of the graph.

See what happens when you change some of the default values. Choose the Force-
Directed Auto-Layout menu item, but change the value of electricalCharge under
Red Options to 300.0 and click OK. Notice that with a higher electrical charge, the
nodes repel each other more, and the result is a graph with greater distances between
adjacent nodes.

On the other hand, if you change the value of springStiffness under Red-Red
Options to 0.2 and click OK, then the stronger springs will result in a graph with
smaller distances between adjacent node.

As a final example, move one node some distance away from the rest of the nodes.
Double-click on the node to change its color to green. Choose the Force-Directed
Auto-Layout menu item, select fixed under the Green Options, and change the
value of springLength under Red-Green Options to 100.0 and click OK. Now, the
green node will remain fixed and the other nodes move towards it. Further, the longer
springLength between the red and green nodes will result in a greater distance between
the red and green nodes than between the red nodes, as illustrated in Figure 8.

 10

Figure 8. Result of changing parameters

Try adjusting the values of the other parameters to see their effect on the layout.

Setting a gravitationalFieldX and gravitationalFieldY induces a field over the entire
document. The gravitational field only affects nodes with a gravitationalMass. Try
values of 1.0 for gravitationalFieldX and 1.0 for gravitationalMass.

Layered-Digraph Auto-Layout
Next, we examine the layered-digraph auto-layout routine. Create a new document,
create a number of one-port nodes using the Basic Node menu item or by double
clicking on the background, move them around, and link them together into a tree similar
to that shown in Figure 9.

Figure 9. Sample Directed Graph

Now, choose the Layered-Digraph Auto-Layout menu item. This will bring up a
large dialog box, similar to that shown in Figure 10.

 11

Figure 10. Layered Digraph Auto-Layout Options dialog box

Examine the different options available for the layered-digraph auto-layout, but leave the
default values and click OK. The graph will be redrawn in its final position as shown in
Figure 11.

Figure 11. Resulting layout after Layered-Digraph Auto-Layout

The layered-digraph auto-layout routines works as follows: the nodes in the graph are
placed into layers such that all of a node’s predecessors are in a higher layer and all of a
node’s successors are in a lower layer; the routine then heuristically permutes the orders
of each node within a layer such that the total number of link-crossings is reduced.

 12

Finally, the routine adjusts the positions of each node within a layer to reduce the number
of bends required by the links. In order to layout arbitrary directed graphs, the layered-
digraph routine removes cycles from graphs by temporarily reversing some links.

In addition, the nodes can be assigned to layers using one of three layering techniques.
The iterations value under Crossing Reduction Options determines how long the
routine looks for ways to reduce the link crossings; however, values higher than 8 rarely
have a profound affect on the final drawing. The aggressive option under Crossing
Reduction Option chooses whether or not to augment the standard crossing reduction
step with additional aggressive, but time consuming, passes. Finally, the layerSpacing
and columnSpacing values determine how much space is reserved between adjacent
layers and columns. The direction option determines the orientation of the directed
links.

Figure 12 illustrates a more complicated graph which has been drawn using the layered-
digraph auto-layout routine.

Figure 12. Result of applying Layered-Digraph Auto-Layout to more
complex graph

This graph shows the consideration that the layered-digraph auto-layout routines give to
nodes with multiple ports. The relative positions of ports within a node are used both in
reducing the number of link crossing and in straightening the links.

 13

3. JGO LAYOUT CONCEPTS

Design Philosophy
JGo Layout has been designed to be easy to use, general enough to meet the requirements
of a large array of JGo applications, and extensible enough to allow application-specific
requirements to be incorporated with minimal effort.

This design philosophy has led to a set of auto-layout classes that export a simple, public
interface, but make use of a number of protected functions to provide hooks for
specialization.

The default implementations of these functions should be adequate for most applications,
but subclassing the JGo Layout classes will often lead to better layouts.

JGoNetwork, JGoNetworkNode, and JGoNetworkLink
The JGoNetwork class provides an abstract view of a JGoDocument as a network (graph)
of nodes and directed links. These nodes and links generally correspond to top-level
JGoObjects in a JGoDocument.

The JGoNetwork class provides a framework for manipulating the state of nodes and
links without affecting the JGoDocument objects. A JGoNetwork is composed of
JGoNetworkNodes and JGoNetworkLinks.

By default, a JGoNetwork is constructed from a JGoDocument by adding all top-level
JGoObjects that are not ports or links as nodes to the network. Alternatively, a
JGoSelection object can be used instead such that only those JGoObjects that are selected
are added as nodes and links to the network.

All top-level JGoLinks as are added, by default, as links to the network. If a
JGoSelection is provided, then only those JGoLinks that are selected are added as links to
the network. Note that links which are selected, but whose corresponding to- and from-
nodes are not selected, will not be added to the network.

The majority of applications will simply let the auto-layout class construct the network
from a document. They need to construct an auto-layout class from the current
JGoDocument or JGoSelection. However, more sophisticated results can be achieved by
combining modifications to the JGoNetwork with auto-layout subclasses written to
recognize the modifications. In particular, nodes and links, which have no relationship to
any JGo object on the screen, can be introduced into the JGoNetwork to influence the

 14

final layout. The JGoNetworkNode and JGoNetworkLink classes provide get and set
methods for Objects used to hold user information, nodeUserData and linkUserData
respectively, which can be used to mark or otherwise distinguish particular nodes and
links in the network.

Those interested in writing subclasses of the auto-layout classes should familiarize
themselves with the JGoNetworkNode and JGoNetworkLink classes, particularly the
getJGoObject() method. This method returns the top-level JGoObject (in the
JGoDocument) which is represented by the JGoNetworkNode or JGoNetworkLink. You
can construct a JGoNetwork manually, or modify an existing JGoNetwork, using the
addNode, deleteNode, linkNodes, addLink, and deleteLink methods. The “add” and
“delete” methods are overloaded to either work with JGoNetworkNodes and
JGoNetworkLinks directly, or more conveniently when modifying a network, to work
with JGoObjects and JGoLinks.

The majority of functions in the auto-layout classes that can be overridden to provide
specialized layout routines take JGoNetworkNode or JGoNetworkLink parameters.

The getJGoObject() method will be useful for tailoring the function result to application
specific details. However, be aware that some auto-layout classes introduce “artificial”
nodes or links, which do not correspond to any top-level JGoObject. For these nodes and
links, getJGoObject() returns null.

JGoAutoLayout
All of the auto-layout routines are contained in subclasses of the JGoAutoLayout class.
Although the JGoAutoLayout class performs no layout, it defines the public interface
inherited by all auto-layout classes. In particular, all auto-layout classes will inherit the
following methods:

public abstract void performLayout();
public void progressUpdate(double progress) {}

The performLayout method is called to perform the actual layout. Since performLayout()
is an abstract method in the JGoAutoLayout class, the JGoAutoLayout class is an abstract
class; hence, no JGoAutoLayout object can be created.

The progressUpdate method is called by subclasses of JGoAutoLayout at various times
with a parameter between 0.0 and 1.0, to indicate the progress through the layout routine.
By default, progressUpdate does nothing, but subclasses could override it to provide
feedback about the progress of the layout.

In addition, JGoAutoLayout defines a set of constructors that can be used to create an
Layout. Any subclass of JGoAutoLayout should call one of these constructors in its own
constructor. The default constructor creates an AutoLayout with a null network and a
null document. Until the network is set to a non-null value using
setNetwork(JgoNetwork n), performLayout() will return without doing anything. The
one-argument constructors take in a JGoDocument or a JGoSelection and create a
JGoNetwork from the document or selection. The two-argument constructor takes in a
JGoDocument and a JGoNetwork. All of these constructors create AutoLayouts that
require no other setup before they can perform layouts.

 15

JGoForceDirectedAutoLayout
The JGoForceDirectedAutoLayout class provides an auto-layout algorithm for graphs,
which utilizes a force-directed method. The graph is viewed as a system of bodies with
forces acting between the bodies. The algorithm seeks a configuration of the bodies with
locally minimal energy, i.e., a position such that the sum of the forces on each body is
zero.

The JGoForceDirectedAutoLayout class currently makes use of three sets of forces:
electrical forces, gravitational forces, and spring forces. Obviously no physical forces are
actually used in the layout routine, and the physical model is not 100% accurate. For
example, forces always act along lines connecting the centers of nodes, but the distances
between nodes are calculated with the size of the node taken into consideration. Hence,
there may be some curious results when using the routine on networks with oddly shaped
nodes. However, the physical analogy makes the layout routine easier to understand.

Each node in the input network is assigned an electrical charge. Each node repels each
other node with a force proportional to the product of their electric charges and inversely
proportional to the square of their distance. In addition, each point in the document can
be assigned a “horizontal electrical field” and a “vertical electrical field.” A node is acted
upon by a force that is proportional to the product of the node’s charge and the field at the
node’s location.

Each node in the input network is also assigned a gravitational mass. Although
gravitational forces are not exerted between node, each point in the document can be
assigned a “horizontal gravitational field” and a “vertical gravitational field.” A node is
acted upon by a force that is proportional to the product of the node’s mass and the field
at the node’s location.

Finally, each link in the input network is assigned a spring length and spring stiffness.
Each link between a pair of nodes exerts a force on the nodes proportional to the product
of the spring stiffness and the difference between the spring length and the distance
between the nodes.

Additionally, a node can be “fixed,” which means that the node will not be moved by the
layout routine, but it will exert forces on other nodes in the network.

The force-directed layout is an iterative process. At each iteration, the placement of the
nodes in the document results in forces acting upon each node. Each node is moved a
distance proportional to the magnitude of the forces acting upon it. This process is
repeated until the forces on each node are reduced to zero, in which case a local
equilibrium has been found, or until a maximum number of iterations have been reached.

JGoLayeredDigraphAutoLayout
The JGoLayeredDigraphAutoLayout class provides an auto-layout algorithm for directed
graphs. The method uses a hierarchical approach for creating drawings of directed
graphs with vertices arranged in layers. The layout algorithm consists of four-major
steps: Cycle Removal, Layer Assignment, Crossing Reduction, and Straightening and
Packing.

In the Cycle Removal step, all directed cycles are removed from the input network by
temporarily reversing some number of links. Two cycle removal routines are provided:
Greedy Cycle Removal and Depth First Search Cycle Removal. With Greedy Cycle

 16

Removal, the idea is to induce an order on all nodes in the network (U1, U2, U3, ..., Uk)
such that for the majority of links L = (Ui, Uj) it is true that i < j. All links L = (Ui, Uj)
such that i > j are reversed. With Depth First Search Cycle Removal, a depth first search
is performed on the input network. A link L = (U, V) not in the depth first forest is
reversed if U was discovered and finished by the depth first search after V was
discovered but before it was finished. The Greedy Cycle Removal routine tends to
reverse a smaller number of links, but the Depth First Search Cycle Removal tends to
preserve a “natural” order to the nodes in the network.

In the Layering step, all nodes in the input network are assigned to layers. If there is a
link L = (U, V), then layer(U) ≥ layer(V). Three layering routines are provided: Longest
Path Sink Layering, Longest Path Source Layering, and Optimal Link Length Layering.
Figure 13 and Figure 14 illustrate the results of each of these.

With Longest Path Sink Layering, every sink node (a node with no links leaving the
node) appears in layer 0 and every node is placed as close as possible to a sink.

With Longest Path Source Layering, every source node (a node with no links entering the
node) appears in the maximum layer and every node is placed as close as possible to a
source.

With Optimal Link Length Layering, nodes are placed in layers to minimize the total
weighted link length, where the length of a link L = (U, V) is given by layer(U) –
layer(V). For more information about Optimal Link Length Layering, please refer to the
Advanced Options section of this guide.

Figure 13. Longest Path Sink Layering

 17

Figure 14. Longest Path Source Layering

Figure 15. Optimal Link Length Layering

Following the Layering step, there are two minor steps that prepare the network for later
steps. The Make Proper step converts the input network into a proper digraph; i.e.,
artificial nodes and links are introduced into the network such that every link is between
nodes in adjacent layers. This has the effect of breaking up long links into a sequence of
artificial nodes.

The Initialize Indices step assigns every node (both real and artificial) in the input
network an index number, such that nodes in the same layer will be labeled with
consecutive indices in left to right order. Three initialization routines are provided: Naïve
Initialization, Depth First Out Initialization, and Depth First In Initialization. With Naïve
Initialization, nodes are assigned indices as they are encountered in a sweep of the
network. Because of the way networks are stored, this has the effect of initially placing
all “artificial” nodes to the right of all “real” nodes. With Depth First Out and Depth
First Search In, nodes are assigned indices as they are encountered in a depth first search
of the network, either from sources outward or from sinks inward.

 18

The Crossing Reduction step reorders nodes within layers to reduce the total number of
link crossings in the network. The basic technique is to sweep back and forth over the
layers, using heuristics to reduce the number of link crossings between adjacent layers.
The first heuristic sorts the nodes in layer by their median and barycenter values, which
are calculated by the nodes’ neighbors in the adjacent layers. The second heuristic uses a
bubble-sort technique on a layer to exchange adjacent nodes whenever doing so reduces
the number of link crossings between the layer and its adjacent layers. In addition to the
basic sweeping technique, there is an optional aggressive crossing reduction step.

The basic sweeping technique sweeps across all layers of the network, potentially
discarding some improvement between one pair of layers because of crossings introduced
elsewhere in the graph. Better results can sometimes be obtained by the aggressive
technique, which spends more time examining subsets of the layers for local
improvements, independent of the rest of the graph. Nodes with multiple ports are
recognized by the crossing reduction heuristics and crossings between links that connect
to the same node are correctly calculated.

The Straightening and Packing step positions the nodes within each layer to reduce the
total number of link bends in the network and to reduce the total width of the network.
The basic technique is to sweep back and forth over the layers, using heuristics to reduce
the number of link bends between adjacent layers. The heuristics are designed to give
higher priority to straightening links that have multiple bend points. In addition, the
locations of ports within a node are used to better align links with their connecting points.
Between sweeps, the network is “packed” to reduce the total width.

The final step is to Layout Nodes and Links. This step simply translates the position of a
node in a layer into a screen position. It also inserts bend points into links that extend
across multiple layers. The node and layer spacing parameters and the direction
parameter determine the exact layout.

 19

4. QUICKLY ADDING LAYOUT TO YOUR JGO APPLICATION

Integrating JGo AutoLayout into an existing JGo application is very easy. This section
will take you through the steps of adding JGo Layout to a generic JGo application.

In the discussion that follows, we will assume that SimpleJGoApp is an existing JGo
application In particular, we will assume the existence of the following class:
SimpleJGoAppView.

Add an import statement near the beginning of the file:
import com.nwoods.jgo.layout.*;

In this example, we will invoke the auto-layout routines from simple functions. We will
not pay attention to how these methods are called. They may be automatically called
when a document is opened, or when the document changed. Or, as is the case in
LayoutDemo, they may be run at the user’s command.

To add a function to perform Layered-Digraph-Auto-Layouts, create a function with the
following code:

void layerAction()

{
 JGoLayeredDigraphAutoLayout layout = new
 JGoLayeredDigraphAutoLayout(getDocument());
 layout.performLayout();
}

To add a function to perform Force-Directed-Auto-Layouts, create a function with the
following code:

void forceAction()
{
 JGoForceDirectedAutoLayout layout = new
 JGoForceDirectedAutoLayout(getDocument());
 layout.performLayout();
}

That’s it!

The constructors for JGoLayeredDigraphAutoLayout and JGoForceDirectedAutoLayout
used above initialize the auto-layout options to default values. Clearly, these values will
not be suitable for all applications. See the Advanced Options section of this guide and
the JGo Layout Reference for details regarding customizing the auto-layout routines.
Further customization is available by subclassing the JGo AutoLayout classes.

 21

5. ADVANCED OPTIONS

This section provides details regarding customizing the JGo AutoLayout routines.
Referring to the JGo AutoLayout API Reference documentation will be helpful when
reading this section.JGoForceDirectedAutoLayout
Most of the customization available in the JGoForceDirectedAutoLayout class is
accessed through overriding methods. However, one critical option can be accessed
through the class constructors:

JGoForceDirectedAutoLayout(JGoDocument doc, JGoNetwork network,
 int Nmax_iterations)

The Nmax_iterations parameter sets the maximum number of iterations that the
routine should use in looking for a local equilibrium. Be aware that networks with large
numbers of nodes and links require more processing during each iteration, so raising the
maximum number of iterations is not recommended.

If a JGoForceDirectedAutoLayout is constructed without specifying a maximum number
of iterations, it uses a default of 1000. To change the default, use the static method:

public static void setDefaultMaxIterations(int x)

The following methods are available to customize the “forces” used by the
JGoForceDirectedAutoLayout class:

protected double getSpringStiffness(JGoNetworkLink pLink)
protected double getSpringLength(JGoNetworkLink pLink)
protected double getElectricalCharge(JGoNetworkNode pNode)
protected double getElectricalFieldX(Point xy)
protected double getElectricalFieldY(Point xy)
protected double getGravitationalMass(JGoNetworkNode pNode)
protected double getGravitationalFieldX(Point xy)
protected double getGravitationalFieldY(Point xy)
protected boolean isFixed(JGoNetworkNode pGoNode)

 22

Keeping in mind the description of the force-directed auto-layout routine given in the
JGo AutoLayout Concepts section of this guide, the nature of each of these methods
should be clear. By default, links have a stiffness of 0.05 and a length of 50, nodes have
an electrical charge of 150, a gravitational mass of 0, and are not fixed, and every point in
the document has both an electrical field and a gravitational field of 0.0 in both
directions.

These methods can be used in a variety of ways to influence the final layout of the nodes
in the document. For example, the LayoutDemo sample application overrides the
getElectricalFieldX and getElectricalFieldY methods as follows:

 public double getElectricalFieldX(Point xy)
 {
 double border = 200.0;
 double min = 0;

 double force = 300.0;
 if (xy.x <= min)
 return force;
 else if (xy.x <= min + border)
 return (force / ((min - xy.x) * (min - xy.x)));

 return 0.0;
 }

 public double getElectricalFieldY(Point xy)
 {
 double border = 200.0;
 double min = 0;

 double force = 300.0;
 if (xy.y <= min)
 return force;
 else if (xy.y <= min + border)
 return (force / ((min - xy.y) * (min - xy.y)));

 return 0.0;
 }

This effectively places an “electrical” border along the axes of the document, which
prevents nodes from being forced off of the document. The Layout sample application
also overrides the other methods in order to use custom values for different colored nodes
and links.

If you want to contrain the nodes to be within a particular rectangle, you can modify
these overrides as follows:

 public double getElectricalFieldX(Point xy)
 {
 double border = 200.0;
 Point doctopleft = getDocument().getDocumentTopLeft();
 double min = 0; // doctopleft.x;
 double max = doctopleft.x + getDocument().getDocumentSize().width;

 double force = 300.0;

 23

 if (xy.x <= min)
 return force;
 else if (xy.x <= min + border)
 return (force / ((min - xy.x) * (min - xy.x)));

 if (xy.x >= max)
 return -force;
 else if (xy.x >= max - border)
 return (-force / ((xy.x - max) * (xy.x - max)));

 return 0.0;
 }

 public double getElectricalFieldY(Point xy)
 {
 double border = 200.0;
 Point doctopleft = getDocument().getDocumentTopLeft();
 double min = 0; // doctopleft.y;
 double max = doctopleft.y + getDocument().getDocumentSize().height;

 double force = 300.0;
 if (xy.y <= min)
 return force;
 else if (xy.y <= min + border)
 return (force / ((min - xy.y) * (min - xy.y)));

 if (xy.y >= max)
 return -force;
 else if (xy.y >= max - border)
 return (-force / ((xy.y - max) * (xy.y - max)));

 return 0.0;
 }

However, if there are too many nodes for the size of the box (here determined by
getDocumentSize()), there may be too much “pressure” and some nodes may “explode”
out of the box.

By adjusting the values of the springLength and springStiffness, one can achieve a
number of sophisticated results. For example, by increasing the springLength between
red and green nodes, it is possible to group the nodes by color as illustrated in Figure 16.
Keep in mind that the colors of nodes are part of the LayoutDemo application, and not a
part of the JGo Layout code itself.

 24

Figure 16. Sample graph after adjusting spring length and thickness

You can use the gravitational field values to influence the layout of tree-like networks.
For example, consider the following two networks:

Figure 17. Sample graph before applying gravity field

 25

Figure 18. Sample graph after applying gravity field

In both networks, the blue root node is fixed. In the network of Figure 17, no
gravitational field has been set. In the network of Figure 18, a slight gravitational field
pointing upward has been added, which results in a more natural layout for a tree.

JGoForceDirectedAutoLayout has two other methods that can be overridden:
protected boolean updatePositions()
protected void layoutNodesAndLinks(boolean final)

The updatePositions method is used each iteration to calculate the forces on each node
and to move the node to its new position; it returns true if additional iterations are needed
to find a local equilibrium. Overriding the updatePositions method is not recommended,
but could be used to add new forces to the layout.

The layoutNodesAndLinks method is used to update the physical locations of the “real”
nodes on the screen to reflect the layout. By default, the layoutNodesAndLinks method
redraws the screen every 10 iterations. One reason to override this method would be to
decrease the frequency of screen redraws, which would decrease the time used to find a
local equilibrium.

JGoLayeredDigraphAutoLayout
Most of the customization available in the JGoLayeredDigraphAutoLayout class is
accessed through the class constructors:

JGoLayeredDigraphAutoLayout(JGoDocument doc,
int NlayerSpacing, int NcolumnSpacing,
int NdirectionOption, int NcycleremoveOption,
int NlayeringOption, int NinitializeOption,
int Niterations, int NaggressiveOption)

JGoLayeredDigraphAutoLayout(JGoDocument doc, JGoNetwork network,
int NlayerSpacing, int NcolumnSpacing,
int NdirectionOption, int NcycleremoveOption,
int NlayeringOption, int NinitializeOption,
int Niterations, int NaggressiveOption)

 26

See the JGo AutoLayout Class Reference Guide for a detailed description of these
parameters. The NlayerSpacing and NcolumnSpacing parameters determine the
minimum space (in logical units) between nodes in adjacent layers and columns.
Generally, since nodes have width and height, additional space is reserved around nodes.
However, NcolumnSpacing will determine the minimum space between long links that
are drawn parallel and adjacent to one another, as illustrated in Figure 19.

Figure 19. A graph showing the use of NcolumnSpacing

The Niterations option determines the number of sweeps used during the Crossing
Reduction step. Experience has shown that values above 8 almost never affect the final
drawing of the network.

The JGoLayeredDigraphAutoLayout also has a number of methods that can be
overridden. These can generally be divided into three categories. The first category of
methods override principle steps of the layered-digraph routine:

protected void removeCycles()
protected void assignLayers()
protected void makeProper()
protected void initializeIndices()
protected void initializeColumns()
protected void reduceCrossings()
protected void straightenAndPack()
protected void layoutNodesAndLinks()

These methods can be overridden to customize the layout algorithm, but care should be
taken to ensure proper initialization and termination of each method. There is little
reason to override most of these methods, since particular cycle removal, layering, and
initialization routines can be specified through the constructor. However, one may wish
to override the layoutNodesAndLinks method in order to take advantage of the added
functionality of sub-classes of JGoLink; for example, a sub-class that tracked bend points
and allowed them to be repositioned by the application.

The second category of methods override spacing methods:

 27

protected int getNodeMinLayerSpace(JGoNetworkNode pNode)
protected int getNodeMinColumnSpace(JGoNetworkNode pNode)

These methods determine the minimum number of layers and columns to be reserved
around the center point of a node. This allows a node to be positioned by its layer and
column, but ensures that two nodes do not overlap in the final drawing. The default
implementations of these functions return 0 for nodes that do not correspond to top-level
JGo objects. For nodes that do correspond to top-level JGo objects, the width and height
of the object determine the space. One may wish to override these methods if there are
nodes in the network whose spacing needs cannot be accurately determined from the
width and height of the JGo object; for example, nodes which will later have significant
text fields associated with them.

The final category of methods override layering methods:
protected int getLinkMinLength(JGoNetworkLink pLink)
protected double getLinkLengthWeight(JGoNetworkLink pLink)

The getLinkMinLength method indicates the minimum length of the link. For example,
if link L = (U,V), then layer(U) – layer(V) ≥ getLinkMinLength(L). The default
implementation gives multi-links (multiple links between the same pairs of nodes) a
minimum length of 2, and all other links a minimum length of 1. This ensures that multi-
links are drawn distinctly, illustrated in Figure 20.

Figure 20. Example use of the linkMinLength method

The Layout Demo sample application overrides the getLinkMinLength method as

follows:

 28

int getLinkMinLength(JGoNetworkLink pLink)
{
 JGoNetworkNode pFromNode = pLink.getFromNode();
 JGoNetworkNode pToNode = pLink.getToNode();

 if ((pFromNode.getGoObject() != null) &&
 (pToNode.getGoObject() != null)) {
 Color fromColor =
 ((BasicNode)(pFromNode.getGoObject())).getColor();
 Color toColor =
 ((BasicNode)(pToNode.getGoObject())).getColor();

 if (fromColor == toColor) {

return 1 * super.getLinkMinLength(pLink);
 } else {

return 2 * super.getLinkMinLength(pLink);
 }
 }

 return super.getLinkMinLength(pLink);
}

This automatically doubles the length of the links between nodes of different colors:

Figure 21. Another example use of the getLinkMinLength method

The getLinkLengthWeight method indicates the weight of the link. The Optimal Link
Length Layering routine assigns nodes to layers such that the sum (layer(U) – layer(V)) *
getLinkLengthWeight(L) over all L = (U,V) is minimized. By default, all links have a
linkLengthWeight of 1.0. The getLinkLengthWeight method can be overridden to
increase the “importance” of a link, which means the link will be kept shorter. For
example, compare the networks of Figure 22 and Figure 23.

 29

Figure 22. Graph before using getLinkLengthWeight

Figure 23. Graph after using getLinkLengthWeight

In both networks, the linkLengthWeight of a link between nodes of the same color is five
times the linkLengthWeight of a link between nodes of different colors. Note that in the
network on the right, the higher weight of the link between the two green nodes resulted
in a shorter link, at the expense of lengthening two links of lesser weight.

AutoLayout and SubGraphs
The autolayout algorithms do not modify the contents of any JGoArea. This is almost
always what you would want, except when the area is a JGoSubGraph. If you want to do
an autolayout of the children of a JGoSubGraph, you will need to do this recursively. If
you program it in a depth-first fashion, you will layout the subgraphs first, thereby
changing their sizes. Then the layout can proceed on the graph that includes the
JGoSubGraph nodes.

Demo1 includes an example of constructing a JGoNetwork for laying out a
JGoSubGraph.

