JGo., for SWT

Graphical Object Editor Classes

User Guide

This guide provides information on using the com.nwoods.jgo package Version 5.2, for use
with Java and the Eclipse platform’s Standard Widget Toolkit, SWT.

September 2006

Northwoods Software Corporation
142 Main St.
Nashua, NH 03060

http://www.nwoods.com/go

mailto:JGo@nwoods.com

JGo User Guide

Copyright © 1999-2006 Northwoods Software Corporation

All rights reserved. No part of this publication may be reproduced, stored in aretrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise without the prior written permission of the publisher.

Northwoods Software Corporation makes no representations that the use of its productsin the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licensesto make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Northwoods or an authorized sublicensor.

Neither Northwoods Software Corporation nor its employees are responsible for any errors that
may appear in this publication. The information in this publication is subject to change without
notice.

The following are trademarks of Northwoods Software Corporation: Northwoods, JGo, GO++,
GoDiagram, GoL ayout, Golnstruments, Sanscript, Flowgram, the Northwoods logo, and Fully
Visual Programming.

The following are third-party trademarks:

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems,
Inc. inthe U.S. and other countries.

All other trademarks and registered trademarks are property of their respective holders.

CONTENTS

PrEIACE .ot 1
I [0} (o Yo [0 Tox 1o Y o (R TP PP PP PRPRTRN 2
2N 1 €0 o o Yo =T o1 £ 3
DeSigN PRIIOSOPNY ...coooiee e e e a e 3
(Do o8] 1 41T o | £ T TP PP P PR OPPPPPRPN 3
WIBWWS ettt ettt ettt ettt e e ettt e e ettt e e et bt e e e b e e e e b bt e e e e bb e e e e enbbe e e e abre e e e anraes 4
LT T o] a1 To= LN @] o= o] S 5
121 =Tt 1o o PP PPOTI 6
€10 U] o1 o PRI 6
LT = o] 1 PSPPI 7
A MINIMal APPICALIONeveiiiiieei e e e e e e e e anes 7
3. JGoDocument and JGOODbject Detailsccuuviiiiieiiiiiieieeee e 9
JGODOCUMENT ...ttt e et e e e e e e e e e e e e e s bbb e e e e e e e nn e ne s 9
B [0 1@ o] [=Tox OO UERR 13
JGODIAWEADIEceiiiitie et ab e e nnnees 16
[G0 =) AP T PP P PP TUPPPPPPPPPPR 16
JG O MAGE .o 18
JGOATBA ... 19
N [CTo] o] ¢ P 21
[€ o] I o | PP UPUPPPPPTR 23
A, JGOVIEW DELAIIS ...ttt e e e et e e e e e e nnee e 28
D1 o] F= 1 PP PP 29
YT o | TP P P PP UPPPOPPPPPPPPPPRt 30
L0 LT g o 1] T PP UTT TP 36
T N[Lo 1 PR 39
[©T0] 7= L] Tod N o o =PRI 40
[©7o] [oo] a1 od A\ oo [T SRR 41
JGOTEXINOUE. ...ttt ettt e e e e e et e e e e e e e e e e aanbbeaeeaaaeeaaannes 43
N[€103S10] o] €] =T o] o PR UPT T UPUUPUPPRTR 44
SIMPIENOUE ... e e e et e e e e e e e s bbb e e e e e e e e e annreneeas 45
LCT=T e =T = 11NN (o o [RO URRUPROTT 46
MUIIPOIINOGE ...ttt ettt e e e e st e e e e e e e e e s e nnbbeeeaaaeeas 46
MU TEXENOUE ...ttt ettt e e e e e e et e e e e e e e e e e anebeeeaaaaeas 47
(Y =T E PP 48
[Rd=Tolo] o |\]o [PP 48
(7] 1011 11T o | PP O PP PRPPPRPPPP 49
General Concepts When Defining NOAES.........cccuvieiiiiie i 49
ST U g Yo [oJ=T o o I = {=To Lo TP PP PP PPROTPPPI 51
UndoableEdit and JGoDocumentChangedEdit.............ccuuieeiiaiiiiiiiiiieeee e 51
JGoUndoManager, CompoundEdits and TranSactionS...........cccceveeeeeviiiiiieeeeeeeessnnnnns 57
Defining MeNU COMMEANASovvieiiiiiiieiiie e s e s e e e e e s e r e e e e e s s s nnnnrneeeeeees 59
7. Performance HINES ..o 61
8. JGO Support For XML and SVGueiiiiiiiiiiiiiece et 62
SVG Support using Batik and SVGGOVIEW.........c.euvuiieieeeiiiiiieieeee e s ssiiieeeeeee e e snsneees 62
XML and SVG Support Using JAXP and the JGo SVG Packagecccceeeeeeeinnnnns 63
Custom XML SUppOrt USING JAXP ...ttt 66
9. Building a Sample Application Using JGO Beans.........ccccceeiiiiiiiiiiiiie e 69
Register the JGo Beans with the Development Environmentccccceeevvvvvvieeeeeenn. 70
Visually Construct the User INtErfacecccuvveeviiee i 70

P (o I Y =T o A1 (=] 41T £ 73

JGo User Guide

CUSLOMIZE the PalELe.........eiiiiee e 77
Yo [o I @3 [10] oY= T e IS U] o] o L] o AR 80
PaYo [0 W g To [o7/ 2{=To (o IS U] o] o lo] ¢ FAN PP 82
Add AULO-1AYOUL SUPPOIT....eeiiiieiiie et e e re e e e e e 84
Add XML/SVG Serialization SUPPOITccoiiiiiiiiiiiieee ettt 86

PREFACE

Purpose of this guide

This guide provides an overview of JGo. All of the classes are part of the
com.nwoods.jgo or com.nwoods,j go.svg packages.

For more detailed information about the classes and members in the JGo package, see the
JGo Class Reference Guide, a set of HTML pages generated by JavaDoc.

This guide also uses as examples some of the code provided in the
com.nwoods.j go.examples package or its subpackages.
Who should use this guide
This guide isintended for application programmers using Javato build SWT
applications. Familiarity with Javaand SWT is assumed.
Structure of this guide
This guide isorganized as follows:
¢ Introduction— summarizes the capabilities of the JGo software.
e JGo Concepts— describes the overall design of the JGo classes.

o JGoDocument and JGoObject Details— describes the details of the JGo model
classes.

o JGoView Details— describes the details of screen updating and input handling.
¢ Nodes—describe the many kinds of nodes that come with JGo.
¢ Undo and Redo— describes what you need to do to support undo and redo

e Performance Hints— suggestions for how to avoid some performance bottlenecks

Other Guides

Another package, com.nwoods.jgo.layout, provides sophisticated layout a gorithms for
nodesin graphs. The layout packageis licensed and documented separately.

JGo User Guide

1. INTRODUCTION

The JGo package, com.nwoods.jgo, is a set of classes built on the Java platform, using
SWT without using AWT, Java2D, or Swing. JGo makesit easy to deliver user
interfaces that allow usersto see and manipulate diagrams of two-dimensiona graphical
objects arranged in a scrollable, zoomable window. Y ou can use JGo to build stand-
alone SWT applications, without depending on Eclipse.

JGo depends on SWT version 3.2 or later.

JGo provides avariety of basic graphical objects such as rectangles, ellipses, polygons,
text, images, and lines. 'Y ou can group objects together to form more complex objects.
Y ou can customize their appearances and behaviors by setting properties and overriding
methods.

A JGo view isacontrol that displays a JGo document. It supports mouse-based object
manipulation, including selecting, resizing, moving and copying using drag-and-drop. A
JGo view also supports in-place editing, printing, and grids.

A JGo document implements a model that supports manipulation of objects. Adding an
object to the document makes it visible in the document’ s views. Y ou can organize
objectsin layers. JGo provides support for composing and manipulating graphs (node &
arc diagrams), where nodes have ports that are connected by links.

The JGo library isflexible and extensible. Many predefined example node classes make it
easy to build many kinds of diagrams. Y ou can easily customize most objects for
application-specific purposes by setting properties or by subclassing. Y ou can add
completely new graphical objects to the existing framework.

JGo iswritten entirely in portable Java source code. It only depends on the standard Java
and SWT packages and does hot explicitly call any native functions.

JGo contains very few user-visible text strings. Y ou can easily localize your JGo
application by setting one class s array of strings.

The com.nwoods.jgo.svg package is included with JGo and provides classes to enable
serialization of JGoDocumentsto and from XML documents. The XML document
format used is an extension of the SV G (Scalable Vector Graphics) XML document type.
JGoDocuments can be saved and faithfully restored in this format and can also be viewed
with standard SV G viewers (however SV G files generated by other tools cannot
necessarily be faithfully read by JGo). Refer to the “Seriaization” section of
“JGoDocument” in the* JGoDocument and JGoObject Details’ chapter for more
information on this topic, and to Chapter 8.

2. JGO CONCEPTS

This guide assumes you are aready familiar with the Java platform and SWT. JGo builds
directly on thisframework, so understanding them is a prerequisite for understanding
JGo. Most JGo classes follow the convention of using "JGo" in their name (e.g.,
JGoView). JGo aso provides partial implementation of some other classesthat it uses
from the Java2 (AWT/Java2D/Swing) world, such as Dimension and Graphics2D for
maximizing source-code compatibility with JGo for Swing. Any other class namesin
this document are Java classes (e.g., or g.eclipse.swt.graphics.Point) or part of the
samples.

Although property namesin Javatechnically should start with alower-case letter, in this
document they are often capitalized for clarity.

Design Philosophy

JGo has been designed to be high performance, easy to use and flexible enough to meet a
large array of requirements. We have extended SWT in as straight forward a method as
possible, because that minimizes the learning curve and al so minimizes compatibility
problems with new releases of Java.

While JGo does not provide every last feature you may need, we strive to provide hooks
in the right places so that you can write all your code in your derived objects without
modifying JGo. We consider it a misfeature of JGo if thereis something you can't
achieve without modifying the JGo sources.

Documents

JGo uses the model-view-controller architecture. JGoDocument serves as the moddl, i.e.
a container providing the abstract representation of the things the user may seeinaview.

Documents provide the runtime storage for the displayable objects. A document isthe
object that containsthe list of layers of graphica objects to be displayed in one or more
views. When you want to have a graphical object appear to the user, you create it, make
sure it has a reasonabl e size and position and any other properties you care about, and
then add it to a document’ s layer.

Class JGoDocument extends Object, so a document and its objects do not depend on the
existence of awindow. Each document has alist of JGoL ayer instances. JGoL ayer
implements JGoObjectCollection, i.e. alist of JGoObjects. The graphical objectsthat a
document layer contains are instances of subclasses of JGoObject. For convenience,
JGoDocument aso implements JGoObjectCollection, treating all of the objectsin al of
itslayers asone long list of objects.

3

JGo User Guide

Views

Each document has a number of propertiesthat affect its appearance and behavior. These
include properties such as paper color and whether the user can modify the document.

When a JGoDocument ismodified, it fires JGoDocumentEvents by notifying all
registered JGoDocumentListeners of al changes to the document, to itslayers, or to any
of its abjects.

Views provide awindow on the graphical objects stored in adocument. A view defines
how the user sees the objects and interacts with them. Each view isa
JGoDocumentListener of the document being viewed so that it can keep its window up-
to-date with all of the objects in the document.

Class JGoView extends or g.eclipse.swt.widgets.Composite and provides the basic
functionality of displaying objectsin layers, with an optional background grid or image:

= A

-
reference ta B
reference to 1 B

reference to
reference tao A

z
rull
——| reference o A

If you need aread-only collection of objectsthat arelaid out in agrid to be selected and
dragged by the user into another view, use the JGoPalette class:

Ackivikies

b=
Start
b=
Finish

NER

Artivity

If you need areduced-scale view of adifferent view that allows the user to pan that other
view, use the JGoOverview class:

JGo Concepts

x

JGoView, in conjunction with the graphical objects, provides a default user interaction
style that is consistent with standard usability guidelines for selection, moving, resizing
and other user interactions. However, user interactions defined by JGoView and the
obj ects themselves are highly customizable. Some of this customization is achieved via
properties on the objects. Much customization can be accomplished by registering
JGoDocumentL istener s on the document and JGoViewL istenerson theview. More
powerful customization can be achieved through the subclassing of the JGoView and
JGoObjects and overriding member functions.

JGoView fires JGoViewEventsfor interactive user actions such as selecting or clicking
on objects or in the background, and for programmatic changes to view properties.

Graphical Objects

All graphical objectsin JGo are derived from JGoObject, which in turn is derived from
Java s Object.

JGoObject defines the basics of a graphical object: a bounding rectangle, mechanisms
for controlling the size and location of the object, and the common properties Visible,
Selectable, Resizable and Draggable. JGoObject definesits own paint method that
defines the appearance of that object. Thus the full power of SWT is available for
drawing your custom objects, if you really need it. Furthermore, JGo has extended the
drawing capabilities of SWT to support coordinate translation/scaling for all objects and
Bezier curvesfor JGoStrokes.

The simplest way to think about JGoObject isthat it isarectangular area that knows
how to draw itself into aview. Infact, in many cases of creating a new simple object, the
only code you need to write is the paint method. For example, here isthe only significant
code in JGoRectangle:

public void paint (G aphics2D g, JGoVi ew vi ew)

Rect angl e rect = get Boundi ngRect () ;
drawRect (g, rect.x, rect.y, rect.wi dth, rect. height);
}

There are three kinds of primitive JGoObj ects:

o Drawable shapes, such asrectangles, ellipses and strokes. Each JGoDrawable
instance can have a pen for drawing the outline of the shape and a brush for
painting (filling) the inside of the shape.

The JGo Package 5 Copyright © Northwoods Software

JGo User Guide

Selection

Grouping

o Text, invariousfonts, sizesand colors. JGoText objects also support multiple
lines, wrapping and in-place editing.

e Images, for various kinds of images such as JPEGs and GIFs. JGol mage objects
can get their image information from files or URLS, either on disk, across the net,
orinaJARffile.

JGoObject provides numerous hooks so that custom derived objects can provide exactly
the desired look and feel. More information is provided in the next chapter.

The JGoSelection classis used by aview to maintain a separate list of the objects
selected. Each view hasits own selection. In addition, the selection class notifies objects
of gaining and losing selection events, and has support (in conjunction with JGoObject)
for the appearance of a selected object. Objects can define their own sel ection appearance
or use the default provided by the JGoObject and JGoSelection classes. Normally
JGoSelection uses a class called JGoHandle, which is derived from JGoRectangle, to
make sel ection handles appear on the screen.

The following illustration shows the default selection appearance for resizable and non-
resizable objects. Also note that, by default, the primary selection color is green and the
secondary selection color is blue-green. These properties can be set in JGoView.

JGoView has some useful methods for manipul ating the selection: adding objects to the
selection and moving or deleting the selected objects.

Resize Handles Man-resizable object

Selection appearance for resizable and non-resizable objects

JGo provides two ways of making groups of objects: areas and layers. Areas provide a
way of making asingle “object” out of other objects. Layers are away of viewing
multiple collections of objectsin adocument.

JGoAreaisaJGoObject that contains other objects within its bounding rectangle.
JGoArea in many ways acts like a document, because objects can be added or removed
from it, and the stacking (painting) order within the area can be changed. JGoArea can
contain any object that is derived from JGoObject. Since JGoAreaisitself derived from
JGoODbject, areas can contain other areas, to any depth.

An object that does not have a parent areais called a “top-level” object. The objectsin
an area are often called its children. Removing a group from a document effectively
causes the group’ s children to disappear also.

JGo Concepts

Several very commonly used areas that implement “nodes’ with “ports’ are provided in
the JGo package, such as JGoBasicNode and JGoTextNode. Many other area and node
classes are provided in the exampl es subdirectory.

JGoL ayer isacollection of top-level JGoObjects held by aJGoDocument. Layersare
just away to split up thelist of objects owned by a document. Each document starts off
with one layer. You can add and remove layers from a document. Y ou can aso change
the order of the layersin adocument, thereby making potentially many objects al over
the document appear in front of or behind other collections of objects. Furthermore you
can affect the visihbility and transparency of all of those objectsin alayer all a once.
Unlike JGoArea, JGoL ayer does not extend JGoObject, so one cannot have layers
within layers. Each JGoObject can belong to at most one layer at atime.

Graphs

One of the principal uses of JGo isto make it easy to build applications where users can
see and manipulate graphs of nodes connected by links. JGo provides this functionality
with the JGoNode, JGoPort and JGoL ink classes. Nodes contain one or more ports.
Links connect two ports.

The exampl e classes provide some pre-built implementations of useful nodes. You can
extend them easily if you need to customize their appearance or behavior.

The sample apps provide some pre-built implementations of graphical browsers and
editors.

A Minimal Application

A very basic use of JGo is provided in the examples directory, Minimal App.java.

[EiMinimal JGo Application 5 =l =

second

second

All of theinteresting JGo code isin the init method:
private JGoVi ew nyVi ew,

public M nimal App(Shell shell) {
nyVi ew = new JGoVi em shel |, SW.V_SCROLL | SW. H SCROLL);

}

public void init() { // only here do we anything JGo specific

The JGo Package 7 Copyright © Northwoods Software

JGo User Guide

/1 add JGoCbjects to the docunent, not to the view
JGoDocument doc = nyVi ew. get Docunent () ;

/] create two nodes for fun...

JGoBasi cNode nodel = new JCGoBasi cNode("first");
/1 specify position

nodel. set Locat i on(new Poi nt (100, 100));

/1 specify col or

nodel. set Brush(JGoBr ush. bl ue);

/1 add to the document

doc. addOhj ect At Tai | (nodel);

JGoBasi cNode node2 = new JGoBasi cNode("second");
node?2. set Locat i on(new Poi nt (200, 100));

node?2. set Brush(JGoBr ush. magent a) ;

doc. addObj ect At Tai | (node?2);

This minimal application just puts up two JGoBasicNodes of different colors. The user
can link them together, select the nodes and/or link(s), move them around, or copy them.
JGo provides dl of thisfunctionality automatically.

JGoDocument and JGoObject Details

3. JGODOCUMENT AND JGOOBJECT DETAILS

JGoDocument

JGoDocument represents a group of JGoObjects that can be displayed by a JGoView.
JGoDocument represents the model in the model -view-controller architecture; JGoView
plays the role of the view and as a default controller.

A document should be thought of as an ordered list of objects. The objectsare drawnin
sequential order, so objects at the beginning of the list appear "behind" objects that are at
the end. You can add, remove, and iterate over the document's objects by using the
document's implementation of the JGoODbjectCollection interface

In addition to al of the objects held by the document, the document has its own notion of
the background color, called the paper color. Thisisindependent of the JGoView (i.e.
Control) background color, which affects the view's border and which is used asthe
background when the document’ s paper color isnull.

JGoDocument aso supports undo and redo by cooperating with a JGoUndoM anager
that listens for and records changes to the document.

Layers

The ordered list of objectsis actually partitioned into sublists by the use of JGoL ayer
instances. Although you normally think of a document as owning the objectsin it,
actually a document directly owns an ordered list of layers. Each layer in turn owns an
ordered list of objects.

When you have created an instance of a JGoObject, you'll want to add it to a document
by calling the JGoDocument addObjectAtTail or addObjectAtHead methods. The
former method places the new object in front of all other document objects; the latter
placesit behind al others. If you are making use of layers, once you have decided the
layer in which to put the new object, you can call the same methods on the layer instead.
You can “move” an object from one layer to another by calling these methods too.

Initially adocument has one layer. Each document has a notion of the default layer in
which aview may create new objects if the exact layer is not explicitly specified.

Each document also has a property referring to the layer that by default holdslinks. Itis
moderately common to create a separate layer for links, to display all links either in front
of the default layer or behind the default layer that presumably holds all of the nodes.

The JGo Package 9 Copyright © Northwoods Software

JGo User Guide

Initialy, since there is only one document layer, the value of getLinksLayer () isthe
same as the value of getDefaultL ayer ().

Y ou may find it convenient when adding JGoODbj ects programmatically to your
document to call the JGoDocument.add method. This method automatically adds the
object at thetail end of the links layer if the object isalink; otherwise it adds it at the tail
end of the default layer.

The removeAll method removes all JGoObjects from the document without removing
any layers. The deleteContents method removes all objects and layers. But you might
find it easier to just throw away the old JGoDocument and create and initialize anew
oneinstead of trying to re-initialize the old one.

Document Coordinates and Size

Events

10

The JGoObjects held in the document each have a size and position. The coordinate
system used by the document comes from the default coordinate system for components,
i.e. positive coordinates increase rightwards and downwards and each unit corresponds to
apixel. JGoViews have a coordinate system that may be trandated and scaled from that
of the document, so as to support panning and zooming.

The document's size is automatically expanded to encompass all of its objects. Normally
adocument has all of its objects at positive coordinates (i.e., the lower right quadrant).
However, if there are objects with negative coordinates, the documentTopL eft property
will indicate the actua “origin” with anegative X and/or Y value. This property
combined with the documentSize property gives the full extent of al of the objectsin the
document. Itispossibleto set either of these properties, but by default they will
automatically get re-set as existing objects are moved or resized or as new objects are
added. However the document’s size does not automatically contract as objects are
moved or removed. JGoDocument.updateDocumentSize is called when an object’s
bounding rectangle is changed; you can override that method to implement your own
policies regarding document size and top-left position.

The document keeps track of all registered JGoDocumentListeners. JGoView isa
predefined implementer of JGoDocumentListener. It needs to notice when document
objects change so that it can update the visible rendering of those objects. You can
register your own listeners to notice changes to the document or its objects. The
fireUpdate method actually does the notification of all document listeners.

JGoDocumentEvent isthe class that represents an event for a document; it extends
java.util.EventObject. Besides remembering which document the event occurred for, it
also remembers the kind of event and the previous state, if appropriate. The kinds of
events include such things as a JGoObject being INSERTED, REMOVED, or
CHANGED. For some kinds of events, there is additional information that further
describesthe event. In particular, the CHANGED event has an object specific sub-hint
describing the exact kind of change and a previous value.

In the Demol example we only show arrowheads at the “to” port of links connected to
the ports of JGoBasicNodes. One way of achieving that effect isto notice when links

JGoDocument and JGoObject Details

get created in the document, and making sure they have the appropriate arrowheads or
other desired characteristics.

nmyDoc. addDocunent Li st ener (new JGoDocumnent Li st ener () {
public void document Changed(JGoDocunent Event e) {
pr ocessDocChange(e);

}
1)

public void processDocChange(JGoDocunent Event e)
{
switch(e.getH nt()) {
case JCGoDocumnent Event . | NSERTED:
if (e.getJGoObject() instanceof JGoLink) {
/1 make sure each link has an arrowhead at its front,
/1 if the "to" port is a basic node port
JGoLink l'ink = (JGoLink)e. getJGoOhject();
JGoPort port i nk. get ToPort ();
if (port !'= null &&
port.getParent () instanceof JGoBasicNode) ({
/1 only have an arrowhead at the "to" end
i nk. set ArrowHeads(fal se, true);
}
/1 if the link connects ports on different classes,
/1 highlight it in red
if (link.getFronPort() != null &&
port.getC ass() != link.getFromPort().getd ass()) {
i nk. set Hi ghli ght (JGoPen. make(JGoPen. SCLI D,
i nk. get Pen().getWdth()+4,
JGoBr ush. Col orRed)) ;

br eak;

}

Instead of adding a document listener, an aternate way to get notification of eventsfrom
aJGoDocument isto create a subclass of JGoView and override the
documentChanged method, since each view is aso adocument listener.

Note that this code will be called whenever any object is programmatically added to the
document, not just when usersinteractively draw anew link. If you just want thisto
happen when the user interactively draws a new link, implement a JGoViewL istener to
look for the JGoViewEvent.LINK_CREATED case, or override JGoView.newLink.

The JGo Package 11 Copyright © Northwoods Software

JGo User Guide

Copying

Y ou can add a copy of acollection of objectsto adocument by calling
copyFromCaollection. The way objects are copied is controlled by the
JGoObject.copyObject methods of al the copied objects and by the
JGoCopyEnvironment. The JGoCopyEnvironment also holds the results of the
copying.

If you just want to add a copy of a single object to a document, call addCopy.

Serialization and Persistence

JGoDocument and JGoODbject implement Serializable. Serialization is used by the
default drag-and-drop mechanism and by copy-and-paste.

Serialized objects will not be compatible with future JGo releases. Thus you should not
use the standard Java serialization mechanism to implement long-term storage of
documents or collections of objects.

For long-term persistence, you may wish to read and write into your own existing
database or file format. In this case, your JGoDocument subclass, and perhaps your
JGoODbject subclasses, will be responsible for transforming the real information into a
network of JGoObjects. Any user driven or programmatic changes to these objects must
then be transformed back into the database’ s representation of the information. The
document will aso haveto act as alistener for any independent changes to the underlying
database, if that is supported.

Alternatively, if the format of your serialized datais not predetermined, serialization to
and from XML can be easily provided by the com.nwoods.jgo.svg package. Details are
provided in Chapter 8.

You may find it helpful to turn on the JGoDocument property MaintainsPartl D, which
automatically assigns a unique integer value to each JGol dentifiablePart that is added to
the document. JGoNode, JGoL ink, and JGoPort al implement JGol dentifiablePart,
so you could use the PartI D of portsto be able to identify which ports each link
connects, and to identify other referencesto nodes or links. The example class,
Comment, also implements JGol dentifiablePart, so that it is easy to store and update
such comment objects.

Navigating Documents

Frequently you will want to iterate over all of the objectsin a document or in alayer,
perhaps just to find and operate on a certain subset of the objects. Because
JGoDocument and JGoL ayer and JGoArea implement JGoObjectSimpleCollection,
you can easily walk the list of objects as follows:

JGoLi st Posi ti on pos = nyDoc. get Fi r st Obj ect Pos() ;
while (pos !'= null) {

JGoOhj ect obj = nyDoc. get Obj ect At Pos(pos) ;

pos = myDoc. get Next Qbj ect PosAt Top(pos) ;

if (obj instanceof MyNode) {

}
12

MyNode n = (MyNode) obj ;
/1 do sonething with MyNode n

JGoDocument and JGoObject Details

Of course you can check for other classes too, such as JGoLink. And you can replace
“myDoc” with alayer or an areato iterate over the objectsin those collections.

Controlling Link Creation By the User

JGoDocument has a property, ValidCycle, that controls whether users are allowed to
draw links between nodes that might cause cycles or loops in the graph, or that would
violate atree-structure, seen abstractly. This property is observed by the validLink
predicate of JGoPort. Moreinformation is provided in the description of ports on page
22.

JGoObject

JGoObject isthe superclass of all objectsthat can be contained in a JGoDocument
(JGoL ayer) or aJGoView and that can be displayed in aview.

JGoObjects are efficient; if SWT controls are considered heavyweight, JGoObjects are
flyweight.

Bounding Rectangle and Location

Each object has a size and a position, in document coordinates. There are many methods
for getting and setting the bounding rectangle for the object, or for just the L eft, Top,
Width, or Height properties. All ultimately go through the basic getBoundingRect and
setBoundingRect methods.

Although normally one can think of the location of an object being the same as the top-
left corner, that may not be natural for some objects. Thus each object hasits own nation
of Location; by default thisisthe same as the top-left. For example, JGoText overrides
getL ocation and setL ocation to use the text alignment in determining the natural
position of the object.

Note that when the location is not the same as the top-left position, the order of setting
the L ocation and the Size of an object may matter. Thisis because setting the size of an
object islikely to cause the location to change. Y ou may want to use (and override if
appropriate) the setSizeK eepingL ocation method.

There are a number of convenience methods for dealing with the standard nine spots of
an object (corners, sides, and center), and for repositioning two objects so that their
particular user-specified spots coincide. See getSpotL ocation, setSpotL ocation, and
setSpotL ocationOffset. The standard spots are:

e Center

o TopLeft

o TopCenter
e TopRight

¢ RightCenter

e BottomRight

The JGo Package 13 Copyright © Northwoods Software

JGo User Guide

Ownership

Events

14

e BottomCenter
e BottomL eft
e LeftCenter

The spot locations are also used to identify the standard handles. There are also NoSpot
and NoHandle values for situations where is no particular spot or handle.

Most JGoObjects should either belong directly to a JGoDocument (actualy a

JGolL ayer) as atop-level document object, or to a JGoArea that belongsto a
document/layer. In either case getDocument returns this document and getL ayer returns
the layer within the document; for children of areas, getParent will return that JGoArea
instead of null.

Occasionally some objectswill properly belong to a JGoView instead of to a
JGoDocument, because they really represent part of the "view" of the document and not
of the document itself. Predefined cases include selection handles and the in-place text
editor. The size and position of view objects are in document coordinates.

Whenever any object is added or removed from a document or a view, the appropriate
INSERTED or REMOVED event isfired for al listeners.

As you define your own subclasses, you can define customized default behaviors for
responding to various events. JGoObj ects do not have their own listeners and events
becauseit is assumed that most of the objects of a certain class in a graph want to behave
the same way. Thisis unlike the situation where one expects to add controlsto adialog
without subclassing and yet have radically different behaviorsfor each one.

The standard "event" handling methods are:
e geometryChange - the object has changed size and/or position
e geometryChangeChild - achild object has changed size and/or position
¢ handleResize - the user is reshaping this object interactively
e owner Change - the object has just been added or removed from a document or
view
e paint - render this object through a Graphics2D if the object isVisible(); if you

override this method to draw beyond the bounding rectangle, be sure to override
expandRectByPenWidth

o doMouseClick - the user just clicked on this object
e doMouseDblIClick - the user just double-clicked on this object

e doUncapturedM ouseM ove - the user just passed the mouse over this object
without any mouse down

e gainedSelection - this object just got added to some view's selection

Properties

JGoDocument and JGoObject Details
o |ostSelection - this object just got removed from some view's selection

o redirectSelection - thisobject is about to be selected; maybe select something
else

e getToolTipText - return astring to display in atool tip

In addition to the bounding rectangle and the location, each object has a number of
boolean properties:

o Visible— can this object be seenin aview

e Selectable — can the user select thisobject in aview

o Draggable — can the user move this object in aview

e Resizable— can the user reshape this object in aview

o 4ResizeHandles— doesthis object only have corner selection handles
o AutoRescale —whether resizing a parent area will resize this object

o DragsNode —whether this selected object, when moved, should move the top-
level parent object instead

o PickableBackground —for areas, whether the area (if selectable) should become
selected if picking in the area but not on a child object

e BoundingRectInvalid —whether to call computeBoundingRect to get a new
bounding rectangle

e Initializing —normally used by areas to indicate that the areais being
constructed or copied, to avoid repeated expensive calculations, such asin
JGoArea.layoutChildren

e SuspendUpdates — should the object temporarily skip notifying listeners

e SkipsUndoM anager — like SuspendUpdates, but instructs only the undo
manager to stop recording information from events for this object; other updates,
such as for the view' s display, proceed normally

Remember that properties such as Selectable and Resizable just control the standard
built-in behavior that JGo views allow the user to do interactively using the mouse. You
can always select or resize objects programmatically, regardless of these property values,
by explicitly calling methods such as JGoView.get Selection().extendSelection(o) and
JGoObject.setSize(w,h).

When an object’ s property changes, a CHANGED document event is sent to all

document listeners. As you define subclasses with additional properties or other state,
you will need to remember to make such notifications. It is easiest to call the
JGoObject.update method after the object's state changes, because it can take care of the
notification details for you.

A CHANGED document event has aflags/hint value which is useful in identifying the
kind of change that occurred. For example, acall to JGoObject.setVisible will result in

The JGo Package 15 Copyright © Northwoods Software

JGo User Guide

acal to JGoObject.update with a hint of ChangedVisible. This additional
discrimination isimportant for optimizing update behavior and supporting undo and redo.

If you want to make a copy of a single object without adding it to a JGoDocument, you
can cal the copy method. (If you do want to add a copy to a document, call
JGoDocument.addCopy.)

Asyou add fields to your subclasses, you will want to make sure the fields are copied
appropriately when the object is copied by overriding copyObject. Because JGoObj ect
implements Serializable, you will heed to make sure al and only those fields that are
needed to be serialized are not declared transient, or you will need to define
writeObject and readObject.

In addition, if you want to support undo and redo, you will need to make sure your
subclass also handles new properties correctly in the copyNewValueFor Redo and
changeValue methods. See the chapter about undo and redo for more details.

JGoDrawable

JGoText

16

The principal subclasses of JGoObject include JGoDrawable, JGoText, JGol mage,
and JGoArea. These are discussed in the following sections.

Drawable shapes include both closed and filled two-dimensional objects and unfilled
(linear) objects such as JGoStrokes. Strokes are multi-segmented straight or curved
lines. Strokes can aso have arrowheads.

Most drawables, though, are things like rectangles, rounded rectangles, ellipses and
polygons.

Each JGoDrawable has a pen (JGoPen) and a brush (JGoBrush) to specify how to
draw the outline of the drawabl e shape and how to paint the inside of the shape. There
are afew predefined pen and brush values that are static valuesin the JGoPen and
JGoBrush classes. Pens and brushes are considered immutabl e objects, so you can
freely share them among multiple JGoObijects.

Y ou can aso construct your own JGoPen and JGoBrush values. Thisis useful when
you want athicker pen or a dotted pen.

If you define your own drawabl e class, you will probably need to consider overriding at
least the following methods: paint, expandRectByPenWidth, isPointInObj, and
getNear estl nter sectionPoint.

The JGoText class displays text strings. There are many properties that help determine
the appearance and behavior of a JGoText object:

e Text —thestring to be displayed

o FaceName —the string name of the font family to be used; the default is
"SansSerif"

o FontSize—the point size specifying the height and width of the characters; the
defaultis 12

JGoDocument and JGoObject Details

o Alignment — how each line of text is aligned within the whole text object; the
default isALIGN_LEFT; this aso determines the L ocation for the object

e TextColor —the color for the characters; the default is Color .black

o BkColor —the color for the background behind the text; the default is
Color.white

e Transparent —if true, the background color (BkColor) is not painted; otherwise
the whole text object isfilled with the background color

o Bold —whether thetext isin abold style
o Italic—whether thetextisin anitalicized style

e Multiline —whether embedded newline characters force aline break in the
display of the text string, or whether line wrapping takes place

o Clipping —whether the text drawing is clipped to the bounds of the text object;
for speed this defaults to false

o AutoResize —whether the size of the text object is automatically adjusted asthe
text string is changed

e 2DScale—whether the user can resize atext object horizontally aswell as
vertically

o Editable —whether double-clicking or clicking on the text object causesthe view
to bring up atext field or text area editor for the user to edit-in-place.

o EditOnSingleClick — by default if the text object is Editable, double clicking
starts editing-in-place; when this property istrue, only asingle click is needed.
For

o SdlectBackground —whether selecting atext object causes the background to be
displayed (Transparent set to false) instead of getting selection handle(s) as
most objects normally do

o Wrapping —whether to automatically insert line breaks even when thereis no
newline character embedded in the string; M ultiline must also be true for
wrapping to take place, and any embedded newline characters are ignored

o WrappingWidth —when Wrapping istrue, specifies the width at which text
will be wrapped to the next line, in document coordinates

When a JGoT ext object is constructed, the FaceName and FontSize properties default to
the values of the static properties JGoT ext.getDefaultFontFaceName() and
JGoText.getDefaultFontSize(). By default, text objects are not Resizable. They
support only single lines of text and do not wrap or clip.

The AutoResize property, which defaults to true, causes the text string to be remeasured
each time the string value is changed and the bounding rectangle to be updated
accordingly. The Location (as determined by the Alignment) will stay the same, but the
width and height will match the dimensions of that text string, in the given font and style.
If you set AutoResize to false or if you explicitly change the Size of the text object, you
run the risk of painting beyond the bounds of the text object, which will result in

The JGo Package 17 Copyright © Northwoods Software

JGo User Guide

JGolmage

18

improper updates of the view. Inthis caseit iswiseto set the Clipping property to be
true, to make sure that the text is not drawn beyond the bounds of the object. The
Clipping property defaults to false for performance reasons.

The SelectBackgr ound property determines how a sel ected text object appears by
controlling the transparency of the text’ s background instead of adding selection handles.

For improved performance the paint method calls the paintGreek method to allow it to
decide on simpler renditions of the text at small scales. The standard implementation
uses the static JGoT ext.getPaintNothingScale() and JGoT ext.getPaintGreek Scal&()
propertiesto decide if the text should be painted at all or if it should just be drawn asa
singleline.

Users can edit text in-place. |If the Editable property istrue, then a double click (or a
single click if EditOnSingleClick istrue) on the text object will invoke doBeginEdit to
create and display aJTextField or aJTextArea component. The Multiline and
Wrapping properties determine the behavior of the Enter key. When Multilineistrue
and Wrapping isfalse, the text editing component accepts the Enter key asinserting a
newline; when M ultiline isfalse, the Enter key calls doEndEdit to finish editing,
resulting in amodified Text string value. In either case the Escape key calls doEndEdit
without changing the string value.

The JGol mage class displays images, including GIF files and JPEG files. Theimages
can be kept as separate files or stored as aresource, referred to by a disk pathname or by
aURL.

Properties:
e Image —the underlying I mage object

¢ Filename —the file pathname from which the image isloaded; null if the URL is
used instead

¢ URL —the URL from which the image isloaded; null if the Filenameis used
instead

o TransparentColor —the Color that isto be drawn instead of a transparent
background for the image; this defaults to null, so that images will show
transparent backgrounds naturally

o NaturalSize —the unstretched dimensions of the Image, independent of the
dimensions of the JGol mage object that you may have assigned

Initially a JGol mage instance will have no I mage to display, and thus will appear empty.
Y ou can assign an image by calling one of the three overloaded methods named

loadl mage, taking Image, String, or URL asafirst argument. For conveniencein
dealing with “relative” paths using URLSs, the loadl mage(String, boolean) method first
checksto seeif the static getDefaultBase method returns non-null. If so, it returns the
result of calling loadl mage(new URL (getDefaultBase(), filename), wait) instead.

Y ou should override JGol mage.loadl mage if you have aternate means of getting an
Image in memory and you depend on serialization. Setting the | mage property by

JGoDocument and JGoObject Details

calling loadl mage(l mage, boolean) works, but the Image is not serialized. When a
JGolmage is serialized and deserialized, it depends on the loadl mage method to
reproduce the Image. If loadl mage fails because there is no loadable Filename or URL
value and you have not provided an alternative means of getting an Image, no image will
show in the view for the deserialized object.

The JGol mage class keeps a cache of Image valuesfor the filesand URLs it loads from.
This saves time and space when the same image file is used by more than one object.
However, if the external file may have changed, you can clear the cached | mage by
calling one of the static r esetl mage or resetAlll mages methods.

JGoArea

JGoAr ea implements the concept of a"group” of objects that can be manipulated
together. An area, like a document, contains alist of JGoObjects. These objects must not
also be contained directly by the document, or by other areas—i.e., objects cannot be
shared.

Just as with document and layers, you can add objectsin front of or behind the existing
objectsin the area, by using the JGoArea.addObjectAtTail, addObjectAtHead,
insertObjectAfter and insertObjectBefore methods. If the object isalready part of the
area, it will make sure the object is at the appropriate Z-order position. Otherwise the
object must not belong to any other area or be atop-level object in alayer. You can
“reparent” objects (between different areas or to/from top-level) within the same layer by
using the addCollection method.

JGoAreaisasubclass of JGoODbject, which meansthat areas can contain other areas.
Thisisthe Composite pattern. Using this mechanism, an object hierarchy can be created.

An areadoes not really have its own independent bounding rectangle. Instead the
bounding rectangle is really the bounding rectangle for al of the children. In fact
getBoundingRect is not meaningful when there are no objectsin an area.

JGoDocument and JGoView treat areas specialy--they search in them when you use
pickODbject or getNextObject.

Often you will want to have this whole "group” of objects be selected instead of any part.
Make the parts (child objects) not selectable; when clicking on a child object, that child
object will not be selected, but the parent areawill be if that parent area isSelectable().

Clicking on any background within the area, i.e. hot on a child object, does not select the
area. If you call setPickableBackground(true) (and the areais selectable and the
children are not), then clicking anywhere within the area's bounding rectangle will select
the area, including at any points where there are no visible parts of the area.

It is commonplace for each top-level areato be selectable, but not to have pickable
backgrounds, and for all of the children to be not selectable. Asyou construct your area
by adding JGoObj ects, you will typically need to remember to call setSelectable(false)
on each child object.

If a JGOArea object isremoved from the document, al of its children are a so removed.

The coordinates for objects within the area are kept in document coordinates; they are not
relative to the area.

The JGo Package 19 Copyright © Northwoods Software

JGo User Guide

JGoArea Management

20

Any object’ s position and/or sizeis changed by acall to setBoundingRect. Such a
change will aso invoke the geometryChange method and all document listenerswith a
CHANGED document event and a ChangedGeometry hint. Remember that these hooks
get called after the size and position have been changed. Override setBoundingRect
itself if you want to prevent certain geometry changes from happening at al, but do so
very cautiougly.

The default behavior implemented by JGoAr ea.geometryChange moves all the children
and resizes them by the same scale that the whole areaisresized. Thisis performed by
the standard implementation of the rescaleChildren method. For areasthat are “nodes’,
(anicon, alabel and some ports), the built-in resize is probably not appropriate,
especially when text strings are included. Y ou can set a child’s AutoRescale property to
false to prevent rescaleChildren from changing the size of the object. In fact, JGoText
objects have a default value of false for AutoRescale.

Particularly since not all children are scaled proportionately, you will need to specify the
size and position of the children explicitly. Itisfairly common for each subclass of
JGoArea to override layoutChildren in order to re-position and perhaps re-size the
ared s children to maintain a certain appearance.

The standard JGoArea.moveChildren method is called by geometryChange to move
all of the area’ s children when neither the width nor the height of the whole area has been
changed.

When an area’ s child object’ s size or position is changed by a call to setBoundingRect,
the parent areais notified by a call to geometryChangeChild. Thisallowsthe areato
adjust its notion of its position and size. The default behavior for
JGoArea.geometryChangeChild isto call layoutChildren; the argument will be the
child object that was moved or resized.

But remember that the change was instigated by a change to a child, and not to the area as
awhole. Be careful to avoid infinite adjustment loops or differing behavior depending on
the order of changes. Thismight happen if you look at the bounding rectangle of the
whole area after changing the bounding rectangle of a child. Since the bounding
rectangle of the whole areais the union of the bounding rectangles of its children, moving
achild may change the bounding rectangle of the area, which may throw your child
layout out of whack. Instead, try to position and size all of the children relativeto a
particular child that the user would think of as being the primary object. For example, for
aJGoTextNode, that primary object isthe JGoText, so JGoTextNode.layoutChildren
method sizes and positions all other child objects relative to that text object.

Y ou need to consider whether users trying to move or copy a child object should instead
move or copy the parent. Because most children are not Selectable thisis not an issue—
the parent object will be selected and moved. But if they are selectable and you want
them to move independently, you will want to set the JGoObject.DragsNode property to
false. (This happens automatically when you add a child to JGoSubGraph.) Even then
if your override of JGoArea.layoutChildren automatically repositions each of the
children to the “right” place when the areaisresized, that will keep the child inits
original location! If you want to allow children to be selected and able to be moved on

JGoPort

Appearance

JGoDocument and JGoObject Details

their own, you should make sure that the geometryChange and layoutChildren methods
do not control their positioning.

On the other hand, if you want the children of a group to be individually selectable but
you do not want the user to move them independently, you should set the
JGoODbject.DragsNode property to true for each of these children. Thiswill let auser’s
drag of aselected child drag the whole top-level area.

If the object’ s shapeisn’t like the bounding rectangle, you may need to override
JGoObject.isPointl nObj to improve picking

JGoPort acts as a connection point for JGoLink objects. Each port has a collection of
JGoL inksthat are attached to the port.

By default a JGoPort appears as an ellipse, but it can use any other JGoObj ect to
control its appearance. The predefined styles are:

e StyleHidden —nothing is drawn

e StyleObject — another object (a*“Port Object”) provides the representation
o StyleEllipse —uses an dlipse (or circle)

e StyleTriangle—usesatriangle “pointing” appropriately

e StyleRectangle — uses arectangle (or square)

o StyleDiamond — uses a four-sided polygon with the vertices at the midpoints of
the bounding rectangle' s edges

The following example node has two ports of StyleEllipse and two ports of
StyleTriangle:

Process

ﬁf

In the following screenshot there is a node with nine ports of StyleDiamond, with alink
to aJGoBasicNode whose port is StyleHidden, and another link to thefirst itemin a
RecordNode whose port is of StyleObject; the object providing the appearance for the
port isaJGolmage displaying astar. The second item has an elliptical port, filled with a
black brush.

The JGo Package 21 Copyright © Northwoods Software

JGo User Guide

Linking Ports

22

a Record
Ttem 0

1tem 1

JGoPort isasubclass of JGoDrawable, so you can easily control the appearance of the
non-hidden, non-Object ports by calling setPen and/or setBrush.

Ports can also share many Port Objects. Y our application can, for example, pre-allocate
several different JGol mage instances corresponding to the kinds of states you want to
display to the user. As each port changes state, you just need to call setPortObject with
the appropriate image. Because potentially many portswill share these Port Objects, they
must not be part of any document (or area or view). Before each Port Object is painted,
its bounding rectangle will be set to the bounding rectangle of the port.

For your application, some ports may be valid sources for links, some may be valid
destinations, and some may be both or neither. It may be that some particular pairs of
ports cannot have avalid new link between them. For example, you may want to avoid
having two different links connecting the same two ports. JGoView callsthe
isValidSource, isValidDestination and validLink methodsto allow the particular port
classes the ability to control whether the user can draw alink starting at a given port and
ending at one.

The standard definition of JGoPort.validLink aso callsisvValidSelfNode and
isvValidDuplicateL inksto decideif it is OK to create alink with both ports part of the
same node and to decide if it is OK to create more than one link in one direction between
the same pair of ports. It also checks the JGoDocument.getValidCycle property to
possibly cal one of the JGoDocument.makesDirectedCycle or makeUndirectedCycle
methods.

The ValidSour ce, ValidDestination, ValidSelfNode, and ValidDuplicatelL inks
properties are all settable. The ValidCycle property of JGoDocument is settable too, of
course.

When the mouse is over aport where the user can start drawing alink, the cursor changes
to aHand cursor.

Because ports have a size, the exact point at which alink should terminate may want to
depend on the dimensions of the port. Furthermoreit is common for there to be different
points depending on whether the link is coming in or going out of the port or where the
port islocated relative to the rest of the node. This notion is supported by the FromSpot
and ToSpot properties, which remember the object spots that links connected to this port
should end at. The getLinkPoint method is responsible for calculating this Point; the
default behavior depends on the FromSpot and ToSpot values.

Override the getLinkPoint method to produce more sophisticated link appearances.
Usually if thelink direction for the port is on one side, the link point will be on the same
side to avoid overlapping the link with the visual appearance of the port. Note that the

JGoDocument and JGoObject Details

link point need not be in the bounding rectangle of the port, although if it istoo far away
it might be confusing or disconcerting for the user.

If you expect the link point to vary dynamically, you may wish to specify NoSpot as the
value for one or both of the FromSpot and ToSpot properties. Override the

getL inkPointFromPoint method and calculate the link point. The X and Y arguments
specify approximately where the link is coming from or going to.

Linksthat are connected to a port may be constrained to come into the port or come out
of the port from certain directions. The direction is calculated by getLinkDir. The
standard directions correspond to the spot locations. If the spot is Center or NoSpot you
will want to override this method to return the desired direction.

Navigating Links

Each port has a collection of links that are attached to the port. The port does not own
any of thelinks; normally the document owns al links. From a port you can iterate over
al thelinks to get to al the ports connected by those links. For example, here is the code
in the Family Tree example where the document is positioning al the “children”
PersonNodes for a particular mother/father pair. All of the children are linked to the
mother/father marriage at a“marriage port”, here held in a variable named np.
/1 now | ook at each child
JGoLi st Posi tion chil dpos = np. getFirstLi nkPos();
while (childpos !'= null) {

JGoLi nk childlink = np.getLinkAtPos(childpos);

chi l dpos = np. get Next Li nkPos(chi | dpos);

JGoPort childp = childlink.getQherPort(np);
Per sonNode chil dnode = (PersonNode) chil dp. get Parent () ;

| ayout Tree(chi |l dnode, childrect);
}

This code iterates over the links at the np port. It gets the port at the other end of the link.
Then it gets the Per sonNode for that other port by getting the port’s parent container and
assuming it is of the correct class. Findly it actually calls afunction with that node
representing the child.

Another method that can be useful for finding directly connected links or nodesisthe
JGoNode.findAll method.

JGoLink

JGoLink isa JGoStroke that connects two different JGoPorts. Normally you create a
link by allocating a new JGoLink specifying both the “from” and “to” ports, and adding
it to adocument. Delete alink by calling the unlink method, which automatically
removes the link from the document as well as disconnecting the link from its ports.

The JGo Package 23 Copyright © Northwoods Software

JGo User Guide
Link Path

The default link stroke will consist of three straight segments (four points in the stroke).
The end segments, at the ports, will be relatively short. The middlie segment will bejust a
straight line connecting the two short segments at the ports. There is no short end
segment if the corresponding port does not have alink port spot (i.e., the valueis
NoSpot). JGoPort.getLinkDir givesthe direction. You can control the length of this
short end segment by setting the JGoPort’s EndSegmentL ength property.

If both ports have link port spots that are NoSpot, then the default link stroke consists of
only a single segment (two points in the stroke), unlessisit Cubic, when it will have four
points and the Cur viness property governs the path of the curve.

If you set the Orthogonal property to true, the default link stroke will have five
segments instead of three, and all segmentswill be either horizontal or vertical. You can
also have the corners of orthogonal links be rounded by setting the RoundedCorner s
property. When isRoundedCorners() istrue, getCurviness() controls the diameter of
the corner curve.

If the position of one or both of its JGoPorts changes, the JGoL ink redraws itself to
connect the new positions. When either port changes it calls the portChange method,
which by default just calls calculateStroke. For complete control over the pointsin the
stroke, override the calculateStr oke method to define the points used by thelink’s
stroke. However, you can set the AdjustingStyle and AvoidsNodes properties to control
how the intermediate points are plotted, excluding the end segments, if any.

When the link’ s from and to ports are the same port, the default cal culateStr oke method
produces alittle “loop” connecting the port with itself.

If you programmatically create alink between two nodes, the initial route for the link

may cross over some nodes until the calculateStr oke method has a chance to adjust.

Y ou may want to call calculateStr oke explicitly on such newly created links.
Appearance and Behavior

Many attributes of links can easily be customized through the properties and methods of
JGoStroke and JGoDrawable, such as;

o linecolor, thickness, and style (JGoDrawable.setPen)
e arrowheads (JGoStroke arrowheads)

e number, location, and size of line segments (JGoStroke points and
calculateStroke; for curved links, JGoStroke.setCubic)

o number, style, and behavior of resize handles (pick points and handleResize)

¢ highlighting (JGoStroke.setHighlight)

e jumping-over of orthogona segments (JGoL ink.setJumpsOver)

e curviness of cubic non-orthogonal links and rounded corners of orthogonal links

The following screen shot displays a JGoL abeledL ink that has an arrowhead at the “to”
end and only a single segment connecting two styles of JGoBasicNode, an Orthogonal
link to a GeneralNode, and a standard three-segment link between the two general

24

JGoDocument and JGoObject Details

nodes. The orthogonal link also has athick red highlight pen in addition to the standard
black pen of width 1.

glliptical basic node

| (=0
o= |

rj s IEH
e | =0 |

B general node 2

rectangular basic node

general node 1

When a JGoLink is cubic, and the link connects two JGoPorts that have NoSpot,
calculateStr oke automatically places the points of the strokein acurve. The Curviness
property controls how far off astraight line the control points are for the cubic stroke. A
positive value produces a clockwise curve; a negative value produces a counter-
clockwise curve, and avalue of zero produces a straight line.

The following picture shows two cubic links connecting two JGoBasicNodes. Each link
has the default Curviness.

1
GDQ@)
Y ou can distinguish between multiple links between the same ports by assigning different
valuesto Curviness:

As mentioned earlier, the JGoL ink.calculateStr oke method is called when one of the
ports is moved and the stroke points need to be replotted in order to maintain the
appearance of a connection between the link’ s two ports. The standard behavior,
depending on various properties of the link and of the ports, was a so described above.

However, alink may very well have a non-standard path, either because you have
programmatically modified the points, or because the user has “resized” some of the link
points by hand. The behavior of calculateStr oke depends on the link’s AdjustingStyle
property. The default valueis JGoL ink.AdjustingStyleCalculate, which produces the
standard link path. Thusif the user has manually moved some of the intermediate points
of alink, and then moves one of the connected nodes, the manual customization islost
because the link’ s path is restored to the standard route.

However, you can set the AdjustingStyle property to other values:

e JGoLink.AdjustingStyleScale — scale and rotate the intermediate points of the
link so as to maintain the appearance of the shape of the link, but at a different
size and angle to accommodate the new relative positions of the ports

The JGo Package 25 Copyright © Northwoods Software

JGo User Guide

26

o JGoLink.AdjustingStyleStretch —interpolate the intermediate points of the link
along the X and Y dimensions between the ports

e JGoLink.AdjustingStyleEnd —just modify the end point(s), leaving the other
points of the link stroke unchanged

For an example of what occurs with a cubic link, before and after one node is moved:

JGoLink Adjusting Style: After moving nodes:

Calculate

Scale

Stretch

End

P,

When thelink is Orthogonal, an AdjustingStyle value of AdjustingStyleScaleis treated
asif it were just AdjustingStyleCalculate, since one cannot maintain orthogonality and
similarity of shape. Also, an AdjustingStyle value of AdjustingStyleStretch istreated
asif it werejust AdjustingStyleEnd, again because orthogonality cannot be maintained.
Furthermore, the AvoidsNodes property makes the AdjustingStyle property moot—the
path is always recal cul ated.

When the AvoidsNodes property is set to true, the calculateStr oke method computes a
short path between the nodes that tries not to cross any nodes. Some customization of
this method can be achieved by overriding the JGoDocument.isAvoidable method to
control which top-level objectsit tries to avoid, and by overriding the

JGoDocument.getAvoidableRectangle method to specify how much of each avoidable
node to consider avoiding.

A selected link will not have selection handles at the very end points, unless thereis only
one segment in the stroke. Resizing alink by dragging an end selection handle causes the
link to be reconnected. The existing link is disconnected from one port. When the link

JGoDocument and JGoObject Details

gesture is completed the port is set again. Y ou can disable this user-relinking behavior by
setting the Relinkable property to false.

The default resize behavior for interior stroke points simply moves that point, rather than
cause the link to be deleted and a new one started. If thelink is orthogonal, the resizing
moves that middle segment to maintain orthogonality. The sample applications include
code to let the user insert new points and remove segments.

Labeled Links

This subclass of JGoL ink that supports managing up to three additional objects located
near either end and near the middle of thelink. The JGoL abeledLink class hasthree
properties: FromL abel, MidL abel, and ToL abel, which can be null or any JGoObj ect.
JGoL abeledLink overrides calculateStroke to perform the default stroke cal culation
and then position each of its (non-null) labels to be near their respective points of the
link. The methods positionEndL abel and positionMidL abel try to be smart about
placing the labels where they do not overlap the link stroke too much, but you can
override these methods to implement your own positioning policies.

The labels can be any object but are usually instances of JGoL inkL abel, a subclass of
JGoText. A JGoLinkL abel has atransparent background by default, and is not
resizable or draggable.

A JGoL abeledLink isnot aJGOAr ea, even though it might appear that it has parts asan
areadoes. Thelabelsareinsertedin thelink’s parent collection (normally a document
layer, but perhaps an area or aview) right after the link, so that they appear just on top of
the link. But one property of areas has been reused for labeled links:
GrabChildSeection. If aJGoLinkL abel is not selectable, the JGoL abeledLink will
be selected if the GrabChildSelection property istrue, whichit is by default.

The JGo Package 27 Copyright © Northwoods Software

JGo User Guide

28

JGoView isacontrol that supports the display and editing of graphical objects such as

4. JGOVIEW DETAILS

nodes and links.

JGoView supports the model-view-controller architecture. JGoDocument is the model

for JGoView.

JGoView supports many basic features:

displaying a JGoDocument and its JGoObjects
displaying its own view-specific objects
scrolling and scroll bars

autoscrolling

scaling (zooming)

printing

clipboard transfer

drag-and-drop

default keyboard commands

view events and listeners

selection

creating links between ports

resizing objects

handling single clicks, double clicks

handling mouse move and tool tips

in-place text editing

default cursor

painting a background color and a background image
displaying agrid

constraining object moves and resizesto agrid

Display

Scrolling

JGoView Details

The primary purpose of JGoView isto display a JGoDocument and its JGoObj ects.
Y ou can use the default JGoDocument that is created for the default JGoView
constructor, or you can supply your own, either at construction time or later by calling
setDocument. It isaso common to override createDefaultM odel so that the default
constructor for your view subclass will automatically create your own document class
too.

A JGoView isjust aregular Control. The part of aJGoView that shows the document is
called the canvas. A view can also have scroll bars.

JGoView aso supports the display of its own view-specific objects. Thus each view on
the same document can have its own set of JGoODbjects. These view objects will appear
in front of all document objects. The most common example of aview objectisa
selection handle (a JGoHandle).

JGoView has support for scrolling and scroll bars built in. By default there will be both a
horizontal and avertical scroll bar, but you can remove one or both of them by setting the
respective propertiesto null. Thereis also a separate corner control, where the two scroll
bars meset, that is visible when both scroll bars are visible.

Because a view does not necessarily show the whole document, the ViewPosition
property indicates where the view's top-left corner isin the document. The ExtentSize
property indicates the size of the view's canvas in the document.

Each view a so provides getDocumentSize and getDocument T opL eft methods, which
allow each view to have a potentialy different notion of the document it islooking at. In
particular, the includingNegativeCoor ds property affects the behavior of both of these
methods. A false value prevents users from scrolling to parts of the document at negative
coordinates. Alternatively, atrue value alows the objects of the document to be placed
anywhere, which can be convenient when additional objects need to be added to the left
of the existing ones, and you don’t want to shift the existing ones rightwards.

Scaling and Coordinate Systems

Painting

JGoView also supports zooming, to change the scale at which the objects are drawn. The
Scale property is normally 1.0; smaller values make objects appear smaller on the screen;
larger values correspond to zooming into the diagram.

The ability to scroll and zoom the view means that the coordinate system used in aview
isdifferent from that used in the document. The convertDocToView and
convertViewToDoc methods perform the basic transformations of Points, Dimensions,
and Rectangles. The docToViewCoor ds and viewToDocCaoor ds methods are retained
from earlier versions, but can be less efficient to use because they allocate new objects
for the return values.

AsaControl, JGoView overrides paintControl in order to render the view. Thisis
responsible for scaling and translating the Graphics2D, getting a document-coordinates

The JGo Package 29 Copyright © Northwoods Software

JGo User Guide

Printing

Selection

Events

30

clipping rectangle, and double-buffering any painting operations. It then calls paintView,
which calls methods to fill in the paper color, to draw any additional background, to draw
all of the document objects (layer by layer), and then to draw any view objects. You can
override paintView or any of the four methods called by paintView in order to get
different effects; overriding paintPaper Color and paintBackgr oundDecor ation are the
most common. Note that setting the Backgr oundl mage property affects the standard
implementation of paintBackgroundDecor ation.

JGoView also provides support for printing. The print method brings up the print dialog
and then starts a Printer Job. Y ou can easily override getPrintDocumentSize,
getPrintPageRect, and getPrintScale to customize how much is printed, on how much
of the page, and at what scale. Override printDecor ation to add headers and/or footers or
any other decoration on each page. Override printView, like paintView, to change what
things get printed--by default the paper color and the view objects are not printed.

The Demol example view, DemolView.java, includes example code for several different
common possibilities.

Each JGoView has a JGoSelection that holds the currently selected document objects for
that view. The default selection object is an instance of JGoSelection, but you can
override createDefaultSelection. The selection object is also responsible for managing
selection handles in the view. Many methods in JGoView deal with the current selection,
either by changing it, or by operating on its collection of objects. Important examples
include: cut, copy, deleteSelection, moveSelection, copySelection, and selectAll.

Y ou can aso control the color of the primary selection object’ s handles as well asthe
color of the selection handles of all other selected objects by setting the
PrimarySelectionColor and SecondarySelectionColor properties of JGoView.

JGoView isaJGoDocumentListener, which is how it can keep its display up-to-date
with changes to the document and its objects.

If you do nothing to override the input handling of a JGoView, the default behavior gives
you input handling that anyone familiar with a graphical object editor would expect.
Objects can be selected, moved, and resized using the left mouse button. Multiple

sel ections can be made using control-left button or with rubber-band selection. Links can
be created by left button down-drag over a JGoPort.

By default most events areignored if the view does not have focus. A mouse pressed
event will try to acquire focus.

The document property M odifiable affects view behavior. When the view’ s document
isM odifiable() isfalse (the default value for the property istrue), JGoView disablesthe
user’s ability to move and resize objects, to link ports, to drop objects, and to edit text.
Selection and scrolling and other event handling continue to operate normally if they do
not normally modify the document. Furthermore, this property is available on

JGoL ayer, and JGoL ayer .isM odifiable() is only true when both the layer and the

JGoView Details

document are modifiable. Thusyou can easily turn off user modification of awhole set
of abjects, if they all belong to one layer, without disabling user modification of all the
other objects in the document.

View Events

JGoView also has view-specific state and general actions that other objects may care
about tracking. Thus aJGoView will notify its JGoViewL istener s about any
JGoViewEvents. Such eventsinclude:

e inserting, changing, and removing view objects (but not document objects)
¢ adding and removing objects from the view's selection

e single and double clicking on objects or in the background

e moving, copying, or deleting the selection

e drawing anew link or reconnecting an existing link

¢ finishing in-place editing of text

e pasting from the clipboard or dropping objects from another window

e changing the view's position and scale or other view properties

A listener can call JGoViewEvent.getHint() to distinguish between the different kinds of
events. The following table lists the standard abstract events that a view will fire.

JGoViewEvent hint Method that firesthe event

CLICKED (single click on a document object) JGoView.doMouseClick
DOUBLE_CLICKED (on a document object) JGoView.doMouseDbl Click
BACKGROUND_CLICKED JGoView.doBackgroundClick
BACKGROUND_DOUBLE_CLICKED JGoView.doM ouseDbl Click

SELECTION_GAINED (object added to selection) JGoSd ection methods
SELECTION_LOST (object removed from selection) JGoSel ection methods
SELECTION_STARTING (before a possibly big JGoSel ection.clearSelection,

sel ection change) JGoView.selectAll,
copySelection, deleteSelection,
paste, doDrop
SELECTION_FINISHED (after apossibly big JGoSel ection.clearSelection,
selection change) JGoView.selectAll,
copySelection, deleteSelection,
paste, doDrop
SELECTION_MOVED JGoView.doMoveSelection
SELECTION_COPIED JGoView.doMoveSelection

SELECTION_DELETING (before actually removing JGoView.deleteSel ection and
The JGo Package 31 Copyright © Northwoods Software

JGo User Guide

objects from document; call consume() to cancel) JGoView.noReLink
SELECTION_DELETED (after objectsareremoved JGoView.deleteSel ection and
from document and from selection) JGoView.noReLink
OBJECT_RESIZED JGoView.handleResizing
LINK_CREATED JGoView.newLink
LINK_RELINKED JGoView.reLink
OBJECT_EDITED JGoText.doEndEdit
CLIPBOARD_PASTED JGoView.paste
CLIPBOARD_COPIED JGoView.copy and JGoView.cut
EXTERNAL_OBJECTS DROPPED JGoView.drop

You can add a JGoViewListener to respond to any of these events. For example, you
can bring up a confirmation dialog when the user tries to delete something.

nyVi ew. addVi ewLi st ener (new JGoVi ewLi st ener () {
public void viewChanged(JGoVi ewEvent e) {
if (e.getHint() == JGoVi ewkEvent . SELECTI ON_DELETI NG ({

)

String nsg = "Really delete "
nsg += Integer.toString(mView getSel ection().getNunmObjects());
nsg += " objects?";
MessageBox dl g = new MessageBox(myShel |,
SWI. | CON_QUESTION | SWI. YES | SWI. NO);
dl g. set Message(nsgQ) ;
if (dlg.open() == SWI.YES) {
e.consune();

High Level Mouse Events

32

One of the more important functions of JGoView isthe ability to handle mouse clicks.
The selection may change or a click will be passed on to any visible object on top at that
point. Thiswill cause JGoViewEventsto be fired off to any interested listeners, and will
call doMouseClick or doM ouseDbIClick. This method then calls the method of the
same name on the object and on its parents up to the top-level object until acall returns
true, indicating that it completely handled the single-click or double-click. If thereisno
object at the mouse point, doBackgroundClick is called, or doM ouseDbIClick returns
false.

Similarly, when the mouse moves without any mouse button being held down,
doUncapturedM ouseM oveis called, which in turn cals the same-named method on the
object underneath that point, and on up the parent chain until acall returns true. Getting a
tool tip text isalso similar, in that the view passes the request down to a particular object
at that point, and to its parents, until it gets a non-null string.

JGoView Details

For convenience the parameters on the do...Mouse... methods take an integer (the event-
modifiers) and two Points (mouse event location in both document and view
coordinates). Y ou can get the original M ouseEvent viathe getCurrentM ouseEvent
method. If you use getCurrentM ouseEvent, be aware that this method may return null
if not invoked from a mouse handler method.

To implement popup menus, you should include the following overrides in your view
subclass:

publ i c bool ean doMouseUp(int nodifiers, Point dc, Point vc) {
if ((modifiers & SWI. BUTTON3) !'= 0) {
JGoOhj ect obj = pickDocOhject(dc, true);
if (obj '= null) {
/1 the right-nouse-button was used
sel ect Qbj ect (obj);
if (obj instanceof MyNode) {
final MyNode node = (MyNode)obj;
Menu popup = new Menu(this);
Menultemiteml = new Menulten{popup, SW. NONE);
iteml. set Text (" Properties");
i teml. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent e) { showProps(node); }
1)
i f (node.canExecute()) {
Menultemitem? = new Menulten{popup, SW. NONE);
iten?. set Text (" Renmove Segnent");
i tenR. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent e) { node.exec(); }
1)
}

/1l coords need to be relative to Display
popup. set Locati on(toDi spl ay(vc));
popup. set Vi si bl e(true);
}
return true;
} else { // no object found at Point dc
/1 can handl e background context click here .
}

}

/1 otherwi se inplenment the default behavior
return super.doMuseUp(nodifiers, dc, vc);

}

Resizing

Views aso have default behavior for resizing objects. When the user does a mouse down
on a selection handle, the view goes into resizing mode. This causes the handleResizing
method to be called while the mouse is dragging the selection handle. This method in turn
calls the handleResize method on the selected object, assuming it isResizable. The
object can then decide how to interpret the resize request.

The JGo Package 33 Copyright © Northwoods Software

JGo User Guide

JGoView's default behavior isto draw an XOR box during the resizing, and to reshape
the object when the resizing is done. Y ou can easily override this behavior to redraw the
object continuously with the resizing, instead of drawing the XOR box. If the user
cancels the resizing with the Escape key, the object isrestored to its original size and
position.

When the object isfinally resized, there will be a JGoDocumentEvent. CHANGED
event for that object, because its geometry will have been changed.

Drag and Drop

34

JGoView hasadefault behavior for drag-and-drop. Each view is both a drag source and a
drop target. Within a view, a drag-and-drop moves or copies the selected objects;

between views a drag-and-drop copies the sel ected objects, and from another drag source
the view can decide to accept the drop and to handleit in an application specific manner.
If the user cancels adrag from a JGoView, the selected objects are restored to their
original locations.

Y ou can control whether aview handles any mouse events or any drag-and-drop behavior
by setting the M ouseEnabled, DragEnabled, and DropEnabled properties. If you turn
off drag-and-drop, of course the user will not be able to perform any standard drag-and-
drop between windows. However, much of the behavior within a JGoView will continue
to function. Without the drag-and-drop mechanism, mouse events (M ouselL istener and
MouseM ovel istener) invoke the JGoView methods doM ouseDown, doM ouseM ove,
and doMouseUp. With the drag-and-drop mechanism, when drag-and-drop is an internal
one within aview, the DropTar getListener methods just invoke the same methods.

To customize aview as a drop target from other components, you may want to override
two methods. computeAcceptableDrop and onExternalDrop. If you want to make use
of the default copy behavior, you can call doDrop from your override of
onExternalDrop. If you need somewhat more extensive customization, you can just
override any of the standard DropTar getL istener methods.

Remember that all selected JGoODbjects that are dragged and dropped need to be
seridizable. If serialization fails, perhaps because your object has areference to an
object that is not itself serializable, the serialization failure exception will be caught by
the drag-and-drop system, resulting in a drag-and-drop failure rather than the behavior
you expect.

Views have additional default behavior for drags within aview: the user can either move
or copy the selection, using the CTRL key as a modifier to indicate copy rather than
move. The copying isindicated with an image of the selected objects that follows the
mouse while the CTRL key isdown. The actual copying of the selection and addition to
the document is performed only if the CTRL key is till down at the time of the drop.
Theoriginal selection remains at its original location; the newly copied objects become
the new selection at the drop location.

The behavior for view-internal dragsis controlled by the I nter nalM ouseActions
property. The default valueis DND.DROP_COPY | DND.DROP_MOVE. Setitto
DND.DROP_MOVE to get move-only behavior, or set it to DND.DROP_NONE to
disable all internal selected object drags, without disabling selection, resizing, linking, or
other default view behaviors.

JGoView Details

Y ou can further customize drags within a view by setting the DragsRealtime and
DragsSdlectionl mage properties. By setting the DragsRealtime property to false the
user’s moving the selection will not actually cause those objects to be continuously
moved; instead the user will move an image of the selection, and the objects are actually
moved only upon a successful drop. The DragsSelectionl mage property (which defaults
to true) controls whether a user’s drag will drag an image of the selection or an outline of
the selection.

Customizing the Mouse Behavior

Clipboard

Y ou may want additional behaviors or “modes’ of operation for the user. For example,
you may want to allow the user to draw a stroke by specifying the points of the stroke by
clicking. You can accomplish this by overriding the JGoView methods doM ouseDown,
doM ouseM ove, doM ouseUp and doCancelM ouse.

The current mouse state of the view is accessible as the State property of JGoView;
predefined values include the JGoView constants starting with the “M ouseState” prefix:

e MouseStateNone

e MouseStateSelection

e MouseStateMove

e MouseStateCreatel ink

e MouseStateCreatel inkFrom
e MouseStateResize

o MouseStateDragBoxSelection
e MouseStatel ast

e MouseStateAction

Y ou can define your own modes or states by using values larger than M ouseStatel ast.
Each mode hasits own specific prerequisitesin order to operate properly, so you should
be careful about interacting with the existing behavior. For convenience thereisa
CurrentObject property that normally holds the current JGoObject relevant to the
current view state.

JGoView supports copying the selection to and from the system clipboard; use the copy,
cut, and paste methods. These methods depend on the JGoTransfer classto identify the
kind of dataand the document's copyFromCaollection method.

JGoView.copyToClipboard makes a new document, copies the selection into it, and
then serializes the document into the clipboard. JGoView.pasteFromClipboard
deserializes the clipboard document and then calls copyFromCaollection to make a copy
of the selected objectsin the view’s document.

The JGo Package 35 Copyright © Northwoods Software

JGo User Guide

Keyboard Commands

A view can accept keyboard focus and can respond to several keyboard commands by
default. Override onK eyEvent to change or augment the default commands. Y ou can
control whether there is any default key event handling by setting the K eyEnabled

property.

User Editing

Creating Links

Another important JGoView feature is the support for the user creating JGoL inks
between ports by "dragging" from a JGoPort to another one. The startNewL ink method
uses validSour cePort and validDestinationPort to see if the port under the mouse point
will permit the user's starting anew link. If so, the view creates atemporary port and a
temporary link from the port to the temporary port. While the user remainsin this
creating-a-new-link mode, the temporary port is continuously moved to follow the
mouse.

Furthermore the view checks to see which portsto which it could make avalid new link,
by calling validLink for al potential pairs of portsinvolving the origina one. The
default implementation of validLink just asks the "from" port if it can be linked to the
"to" port; this allows the behavior to be overridden either in the port class or in the view.

To make drawing links easier for the user, there is also the notion of "port gravity", a
distance. The temporary port automatically snaps to the location of the closest valid port
within the port gravity distance.

Finally, when the user rel eases the mouse to create the link, the newLink method is
called. This method is responsible for creating the real JGoL ink (either that classor a
user-defined subclass) in the document connecting the two ports; the temporary port and
link are discarded. If for some reason the link is not made, because the attempted link was
invalid or because the user cancelled the link drawing process, the noNewL ink method is
called. Thisallows viewsto clean up any other state or inform the user or do some other
default failure action.

In-place Text Editing

36

Another handy feature that JGoView offersisin-place text editing. If a JGoT ext object
is editable, then clicking on it may put it into editing mode, where the user can change the
string. Thisis accomplished by creating atemporary JGoT extEdit object in thisview
and having it be responsible for actually creating and displaying a JTextComponent and
handling its editing completion or cancellation. The JGoTextEdit objectisheld asa
property of the view (JGoView.getEditControl()). Use doEndEdit to stop any in-place
text editing in progress.

Y ou can control how the user can enter text-editing mode by setting the Editable
property of the JGoText object. By default this happens when the user double-clicks on
thetext. By setting the EditOnSingleClick property, the user can just click on the text to
start editing it. However, thisis only possible if the JGoText object is selectable. If itis
not selectable, probably becauseit is part of an area, you may need to override

JGoView Details

doM ouseClick to start editing. See the examples/SimpleNode.java code for an
example.

If you want to detect when the user has edited a JGoText object:

nyVi ew. addVi ewLi st ener (new JGoVi ewLi st ener () {
public void vi ewChanged(JGoVi ewEvent e) {
if (e.getHint() == JGoVi ewkEvent . OBJECT_EDI TED) ({

JGoText text = (JGoText)e.getObject();

JGoOhj ect node = text.getParent Node();

i f (node instanceof MyNode) {
MyNode m = (MyNode) node;
String s = text.getText();

update ny database for node mto have value s

Alternatively, you could implement a JGoDocumentL istener (or, more efficiently,
override JGoView.documentChanged) to do something similar:

nyVi ew. get Docunent () . addDocunent Li st ener (new JGoDocunent Li stener () {
public void docunment Changed(JGoDocunent Event e) {
if (e.getHint() == JGoDocunent Event. CHANGED &&
e. get Fl ags() == JGoText. ChangedText) {
JGoText text = (JGoText)e.getObject();
JGoOhj ect node = text.getParent Node();
i f (node instanceof MyNode) {
MyNode m = (MyNode) node;
String s = text.getText();
update ny database for node mto have value s

The difference isthat the document listener will be invoked whenever the JGoT ext
label’s Text string is modified, for any reason. The view listener is called only after the

user editsthe label interactively.

If you want to do some validation of the user’ s text entry, you can override
JGoText.doEdit. Hereisan example:

/1 do sone validation--don't allow integers |arger than 1000
public bool ean doEdit(JGoView view, String oldtext, String newtext) {

try {
int i = Integer.parselnt(newext);

if (i > 1000) {
vi ew. doCancel Mouse() ;
MessageBox dl g = new MessageBox(vi ew. get Shel | (),
SWI. | CON_ERROR | SWI. CK) ;
dl g. set Message(Integer.toString(i) + " is too big!'");
dl g. open();
return false;

}
The JGo Package 37 Copyright © Northwoods Software

JGo User Guide

} catch (Nunber For mat Exception ex) {
/1 allow non-integers to pass validation

}

return super.doEdit(view oldtext, newtext);

}

Returning false will leave the text editing component up; returning true will cause
doEndEdit to be called to remove the text editing component.

Note the call to JGoView.doCancelM ouse, to make sure no mouse operation is ongoing
in the view during or immediately after the presentation of the dialog.

38

Nodes

5. NODES

As noted previously, sets of JGo primitive objects can be combined into higher-level
grouped objects. One of the most common applications of thistechniqueisin creating a
“node” for adiagram. A nodeisaJGoArea that contains some JGoPorts, thus allowing
the nodes to be connected to each other with JGoL inks.

The JGoNode class extends JGoAr ea to provide several useful featuresthat practicaly
al “nodes’ have. Each node has several properties:

e Label, providing access to the principal JGoText object in the area
e Text, which by default accesses the string in the L abel

e ToolTipText, which if non-null, isastring to be displayed in atooltip when the
user hovers over the node

e PartlD, aunique integer identifying this node, if the node’ s document’s
MaintainsPartl D property istrue

o UserObject, an arbitrary object that programmers can use to associate their own
information with the node (i.e., this property is not used by JGo)

o Flags, an arbitrary integer that programmers can use for application-specific
purposes (i.e., this property, which is actually on JGoODbject, is not used by JGo)

All of the classesin JGo whose names end in “Node”, whether part of the JGo package or
as examples, extend JGoNode. We recommend that you extend the JGoNode class or
one of its subclasses when you want to define your own area containing ports.

Three very commonly used kinds of nodes are included in the JGo package, along with
one kind that can hold nested graphs:

o JGoBasicNode, an eliptical or rectangular node with asingle port and asingle
optional text label that can be positioned at different spotsrelative to the
drawable shape

¢ JGolconicNode, the simplest node with an image for theicon, atext label, and a
single port

o JGoTextNode, a node displaying text with a background shape and four ports,
one at the center of each side

o JGOoSubGraph, anode that can hold a graph within the area, with optional label,
background color and border, and that can be collapsed/expanded by the user

The JGo Package 39 Copyright © Northwoods Software

JGo User Guide

But many useful examples are provided for you in the examples directory. These
include:

o SimpleNode, a node with an icon, alabel, and two ports

o GeneralNode, anode with anicon, labels at the top and bottom, and variable
numbers of labeled ports on the left and right sides

e MultiPortNode, a node like JGol conicNode, but with a variable number of
ports that can be positioned arbitrarily on the node

o MultiTextNode, anode displaying alist of objects (typically JGoTexts) with a
pair of objects (typically JGoPorts) on each side of each item, separated by lines
and backed by a JGoDrawable, with an additional pair of objects (again,
typically ports) at the top and bottom of the node

o ListArea, an areathat organizesalist of objects, much as M ultiTextNode does,
but with ascroll bar

o RecordNode, acomplex node that usesaListAreato hold ascrollable list of
objects with ports, and adds header and footer objects

o Comment, an areathat displays multi-line text with a background that looks like
a notepad

Other potentialy useful node, link, and drawabl e classes are provided in the example app
subdirectories, including:

o ClassNode (in Classier)
o Diamond (in the examples directory)
o PersonNode (in FamilyTree)

For al of these examples, be sureto look at the source code for more descriptions and
details.

JGoBasicNode

40

The JGoBasicNode classis useful when you want to display some text and thereisjust a
single port centered in an ellipse or rectangle. Use JGoBasicNode when you expect that
there may be links coming in or going out in different directions, and you would like the
link to seem to originate from the center of the ellipse or rectangle.

A JGoBasicNode has propertiesfor its parts: Drawable, Label, and Port. Aswith all
JGoNode subclasses, thereis easy access to the text string by means of the Text
property. JGoBasicNode a so provides convenient access to the Drawable’s Pen and
Brush properties.

Y ou can control the relative position of the JGoText label to the JGoDrawable
background shape by setting the L abel Spot property. For example, the following
diagram shows four different JGoBasicNodes, each with a different L abel Spot.

Nodes

Users can draw new links interactively by dragging from the ports in the center of the
nodes. They can select/move/copy nhodes by a mouse-down on the text or on the rest of
the drawable shape.

When the L abel Spot is JGoObject.Center, then the layout of the nodeis atered so that
the background shape is expanded to surround the text.

The port’s style is changed to be JGoPort.StyleHidden, and its size and position are
changed to match that of the background drawable shape. Thus userswill be ableto
interactively draw links between such JGoBasicNodes by starting to drag in the drawable
shape but outside of the text itself. Users can drag the node by dragging thetext. In this
configuration it is easy to disable user-drawing of new links for a particular node by
making the port invisible: aBasicNode.getPort().setVisible(false).

The size of the drawable’ s object is determined by the size of the text label. The Insets
property specifies how much bigger to make the drawable object than the label. Thisis
particularly useful for shapes such as JGoEllipse or Diamond that would otherwise cut
off part of the text.

If however you want the drawabl € s size to remain constant even when the label’ ssize
changes due to text changes, you can call setAutoResize(false) to cause the JGoT ext
label to be Multiline, Wrapping, and Clipped, with aWrappingWidth determined by
the width of the drawable minus the I nsets. It will display as much text as will fit.
Usually you will want to call getL abel().setAlignment(JGoText. ALIGN_MIDDLE) to
have the text be centered in the node.

If you create a JGoBasicNode by using the zero-argument constructor, it will not have
any parts. You will need to create and assign the parts yourself. If you use the
JGoBasicNode constructor that takes a string, the resulting node will have aL abel, a
Port, and aDrawablethat isaJGoEllipse.

JGolconicNode

A JGol conicNode is the simplest node that has anicon. It has atext label and asingle
port. You'll want to use JGol conicNode in the same circumstances as JGoBasicNode,

The JGo Package 41 Copyright © Northwoods Software

JGo User Guide

except that JGol conicNode' s primary display is an icon rather than atext object with a
rectangle or ellipse. Links appear to originate from the center of theicon.

A JGol conicNode has properties for its parts: 1con, Label, and Port. The Text property
provides convenient access to the label’ s text string. The | con need not be an instance of
JGolmage, dthough it is by default. For convenience, the | mage property casts the I con
as aJGol mage.

=l
F D
| g
2

Like a JGoBasicNode, the port of a JGol conicNode is at the center of theicon, but its
styleis JGoPort.StyleHidden so it does not obscure the icon. Users can draw links from
and totheicon. Users can drag the node by dragging the text or part of the icon outside
of the port. It isalso easy to disable auser’s drawing of new links for a particular node
by making the port invisible.

If you create a JGol conicNode by using the zero-argument constructor, it will not have
any parts. You will need to create and assign the parts yourself. If you use the

JGol conicNode constructor that takes a string, the resulting node will have a L abel and
aPort and an Icon that isa“blank” JGolmage. You will still need to initiaize the
image, perhaps as follows:

JGol coni cNode i node = new JGol coni cNode("an iconic node");

i node. get | nage() . set Si ze(50, 50);

i node. get | mage() . | oadl mage(Denpl. cl ass. get Resource("doc.gif"), true);
other inode initialization

If the Draggablel abel property is set to true, the user is able to drag the text label
around. Moving the node then aso drags the label, keeping it at the same position
relative to theicon.

42

Nodes

JGoTextNode

When you have alot of textually identified objectsto display, and the links between them
tend to be organized in a horizontal and/or a vertical direction, then the JGoTextNode
may be what you would prefer to usein place of aJGoBasicNode. Each JGoTextNode
has four ports—one in the middle of each side of the node. When the links are connected
to the appropriate ports, the links tend to be more cleanly organized, whether using the
default three-segment stroke or the five-or-more-segment strokes when the JGoL ink
Orthogonal property istrue.

The Text property provides accessto the label’ s string value.

cum.nwnnda.jgn.JGnDrawablel

cum.nwnnds.jgn.JGnlmagel

—caom.mwoods jgo.JGo0hject cum.nwnnds.jgn.JGnTE}nl

cum.nwnnds.jgn.JGnAreal

cnm.nwnnds.jgn.JGnCnntrnll

By default the four ports are very small and of style JGoPort.StyleHidden. You may
find it convenient to remove unneeded ports by setting them to null; e.g.,
myTextNode.setTopPort(null). Thelnsets property determines how much space there
ison each side of the Label, aJGoText.

The size of the background’ s object is determined by the size of the text label. The

I nsets property specifies how much bigger to make the background object than the label.
Thisis particularly useful for shapes such as JGoEllipse or Diamond that would
otherwise cut off part of the text.

If however you want the background’ s size to remain constant even when the label’ s size
changes due to text changes, you can call setAutoResize(false) to cause the JGoT ext
label to be Multiline, Wrapping, and Clipped, with aWrappingWidth determined by
the width of the drawable minus the I nsets. It will display as much text as will fit.
Usually you will want to call getL abel().setAlignment(JGoText. ALIGN_MIDDLE) to
have the text be centered in the node.

If you create a JGoT extNode by using the zero-argument constructor, it will not have
any parts. You will need to create and assign the parts yourself. If you use the
JGoTextNode constructor that takes a string, the resulting node will have a L abel, four
JGoPorts (TopPort, RightPort, BottomPort, L eftPort), and a Background that isa
JGo3DRect.

The Classier example’'s ClassNode class, which extends JGoTextNode, also handles
selection and double-click by changing the background color and by displaying much
more information in the text label.

The JGo Package 43 Copyright © Northwoods Software

JGo User Guide
JGoSubGraph

44

Often the information model you wish to display to your user can be organized as a graph
whose nodes can themselves be displayed as graphs. One way of handling thisisto
implement your application as a multiple-document interface application, where drilling
into a node brings up anew child window showing the detail diagram. This helps keep
individual graphsrelatively small and simple.

But another way of displaying graphs within nodes is to show the graphsin-place. The
JGoSubGraph class provides some useful featuresin this regard—it adds alabel that
can be positioned at various spots in the area, a background color, and a border.

A JGoObject property, DragsNode, controls whether an object that is selected can be
dragged around by the user independently of the parent area. JGoSubGraph
automatically sets that property to false for all objectsthat are added asimmediate
children of the area. This allows users to move the nodes around within the
JGoSubGraph.

=l one
1a

1c

Each subgraph has a small rectangular handle at the top-left corner. Thisinstance of
JGoSubGraphHandle can be clicked by the user to collapse and expand the subgraph.
All of the children (besides the label and the handleitself) are made not Visible and are
moved to the top-left corner of the subgraph. The labd is moved to the middle of the
(now-reduced-size) subgraph node. Collapsing also remembers all of the positions of the
children so that an expansion will restore the original positions of the nodes within the
subgraph.

Nodes

The TestSubGraph classin the Demol example demonstrates adding an input and an
output port to a JGoSubGraph, asif the subgraph were like a SSimpleNode.

The TestSubGraph2 class, also in Demol, demonstrates having a single port
representing the subgraph as awhole node, in addition to whatever ports the subgraph’s
child nodes may have. Its Port isan instance of TestSubGraph2Port, whichisa
subclassin order to override JGoObj ect.pick to make the port act asif it were hollow, so
that only the outer margin of the port is active to the user for initiating the drawing of a
new link. The layoutChildren override makes sure the Port’s bounding rectangle covers
the whole subgraph; by default the Port would have had the same bounds as the Handle.

Demol furthermore provides a CollapsedObiject for the instances of TestSubGraph and
TestSubGraph2 that it creates. The subgraph’s collapsed object is shown instead of the
background and border when the subgraph is collapsed. In Demol, the collapsed object
isjust aJGolmage.

Y ou can specify the location of the Label relative to the subgraph’s children by setting
JGoSubGraph'’s Labed Spot and CollapsedL abel Spot properties.

JGoSubGraphs are aso resizable by the user. Resizing just modifies the I nsets property
(or the Collapsedl nsets property if the subgraph is collapsed), so that resizing the whole
subgraph does not resize (or reposition) any of the subgraph’s child nodes.

Although it should be clear that a JGoSubGraph should contain the various child nodes
that are part of it, it should also be the parent of al of the JGoL inksthat connect the
subgraph’s children. Thisis needed so that copying a subgraph will properly copy all of
the links that appear to belong to the subgraph because they connect nodes that appear to
belong to the subgraph. A link between a subgraph’s child node and ancther top-level
node cannot belong to the subgraph, of course, but will need to belong to the
JGoDocument. And similarly, alink between a subgraph’s node and another subgraph’s
node, if one subgraph isa child of the other one, will need to belong to the “least
common parent” subgraph.

Thus JGoView.newLink and JGoView.reLink automatically call
JGoSubGraphBase.reparentToCommonSubGraph to make sure any newly drawn
links or newly reconnected links belong to the proper subgraph, if any.

Since SWT does not support alpha blending, thereis limited support for trand ucent
backgrounds by setting the Opacity property of JGoSubGraph. However, there appear
to be SWT problems with printing these partially transparent backgrounds.

JGoSubGraph now extends the JGoSubGraphBase class. If you don't like the design
of the JGoSubGraph class you can design and implement your own by inheriting from
the JGoSubGraphBase class. JGoSubGraphBaseisaminimal extension of JGoNode
to support nested nodes and links. It does not implement support for
collapsing/expanding, nor does it even assume there are drawn borders or aLabd or a
Port.

SimpleNode

A SimpleNodeis dightly more complicated than a JGol conicNode. It isdesigned for
“flow” -like applications whaose diagrams have a generaly horizontal orientation. Instead

The JGo Package 45 Copyright © Northwoods Software

JGo User Guide

of asingle port for the node, there are two distinct ones, one on each side. Often you can
consider one as an “input” and the other as an “output”.

B Finish

Although SimpleNodes are not normally resizable, if they are resized, only theiconis
resized while maintaining its original aspect ratio. Aswith JGol conicNode, the object
passed to initialize is normally a JGolmage, but may actually be any JGoObject.

Thelabel for a SimpleNode is normally editable by the user. Y ou can turn this off by
aSimpleNode.getL abel().setEditable(false).

Y ou can customize the appearance of the ports by setting JGoPort properties such as
PortStyle, Pen and Brush, or PortObject.
GeneralNode

A GeneralNode isageneraization of a SimpleNode. It supports a variable number of
ports on either side of the node. It aso can have two labels for the whole node, at the top
and at the bottom. Furthermore each port hasits own label, to help identify the port to

the user.
T
o> N P
1 [=ves
2 [| [=no
ofe [=maybe

o B0 possibility
1E} [:"'1
7= Bz three
=3 irst =0
first thing Eemlndg [=1
hird [> B2
[=3

another

The GeneralNodel abels and GeneralNodePortL abels are normally editable by the

user. Each port, a GeneralNodePort, isindexed by position on its respective side of the
node.

MultiPortNode

A MultiPortNodeisjust like a JGol conicNode, but with a variable number of ports that
can be positioned arbitrarily within the node. When you create a M ultiPortNode you
will need to add JGoPortsto the area and position them appropriately.

46

Nodes

The user can interactively reposition the label (aMultiPortNodel abel) relative to the
icon. Thisisuseful in allowing the user to position the label so that fewer links crossit.
If you make this label not Selectable, the user will not be able to select and drag the label
independently of the rest of the node.

The MultiPortNodePort class automatically changesits Brush upon achange in the
number of links that are connected to the port. Y ou may wish to modify or override the
linkChange method to suit your application’s needs.

MultiPortNodePort isaso interesting in that it implements a M axL inks property—you
can specify the maximum number of links that the user can connect to the port. For
demonstration purposes this value defaults to three, but you can set it to any value.

multipornt node

noded

MultiTextNode

When you want to display several objects vertically in an area, perhaps separated by lines
and with a drawabl e shape as the background, the M ultiTextNode is appropriate to use.
Each item in the node can have its own ports on each side, and there are ports at the top
and at the bottom of the whole node.

Asthe nameimplies, it istypically used to display text strings. The addString method is
aconvenient way of setting up aMultiTextNode.

Each M ultiTextNode hasits own ItemWidth property, which is used to specify the
width of al of theitem objects. Calling setltemWidth automatically resets the width of
all of the items present in the node. For convenience, if an item is an instance of
JGoText, the method al so sets the text object’s WrappingWidth. However, if you do
not want the text to wrap automatically, you can set the text’ s Wrapping property to
false. Because the width of the text isthen forced to be the node’'s ItemWidth, you will
want to make sure the text’s Clipping property istrue, so that text on long lines doesn’'t
spill over beyond the bounds of the node.

The JGo Package a7 Copyright © Northwoods Software

JGo User Guide

— YourMode
some infarmation

MyMode — same other infa
some infarmation

same other info [«

_q’
HerNode <—_> ‘l

some information HisHode
a lot of info that weatch outl
WIApS oMo |———1 . come other info
multiple lines

ListArea

A ListAreaissimilar to aMultiTextNode in that they both display an ordered list of
objects. However, ListArea supports the use of scroll bars to be able to display many
itemswithin arelatively small area. Furthermore, ListArea isdesigned to be oriented
horizontally as well as vertically, with the scroll bar on either side.

The following screen shot shows two ListAreas, one horizontal and one vertical, each
showing three text objects and one polygon object. The text object containing the string
“Item 8" is selected in both areas.

Item Sitem E.Item g
;I [>

tem 5 =
[tem &

ListAreas can be resized, both programmatically and interactively. The minimum sizeis
constrained to be large enough to show both the tallest item and the widest item.

Just as with M ultiTextNode, each item can have two objects on each side, typically
instances of JGoPort. But ListArea also supports afourth object for each item, whichis
typically used for an icon (see the Recor dNode screen shot, below).

Y ou can specify the spacing between the items, the pen used to draw lines between the
items, the rectangle used as the background, and the insets or margin around thelist of
items but inside the background. Unlike M ultiTextNode, the item objects are not resized
tofit to a particular width. In fact, the whole areawill grow to accommodate an item that
has grown in size.

RecordNode

A RecordNodeisan areathat includes a ListArea and a header and afooter object. It
assumes that each item object really is accompanied by an optional JGoPort, thus
making this area a true node.

48

Nodes

a Record

1tem &
1tem 9
1term 10

em 11
1tem 12

1item 11
1lterm 12

1sfart a link
1hot sefectabie

1tem 14
1term 16

Of course all of thereal flexibility comes from the ListArea class.

Comment

A Comment isasimple JGoArea that just has a JGoText object with a
JGo3DNoteRect as a background object. Asthe size of the text changes, the bounds of
the comment adjust correspondingly.

Thisisa
multiline comment.

For convenience you can access the text string by the Text property. You can also
change whether users can interactively edit the text in acomment by setting the Editable

property.

General Concepts When Defining Nodes

Y ou will probably want to add graphics that are specific to the real object the node
represents. For example, if the node is a shop floor manufacturing machine, there might
be a“ Stopped” state that might change the appearance of the node so the operator could
tell at aglance.

Another common addition is a property-editing dialog for each kind of node. Not all of
the interesting information can or should be shown as JGoODbjects; for example,
additional status and alot of controlsfor that shop floor manufacturing machine probably
belong in adialog.

When defining your own class derived from JGoAr ea or JGoNode, you may find it
useful to examine the classes in the examples directory.

Depending on the desired functionality, there are several things that are commonly done
in custom node classes:

¢ When adding settable fields, consider adding a new Changed hint and overriding
copyNewValueForRedo and changeValue to handle updates with that new
hint, to support undo and redo. (Moreinformation is available in the chapter
about Undo and Redo.) You'll also want to override copyObject.

The JGo Package 49 Copyright © Northwoods Software

JGo User Guide

When some of your fields refer to children of the area, you will need to override
copyChildren to make sure that each field is referring to the corresponding
newly copied child object. And you should override removeObjectAtPosto
check for when achild is removed from the area, to make the field reference
invalid.

If you want to support the standard persistence using SVG XML, be sureto
override SVGReadObject, SVGUpdateReference and SVGWriteObject to
read and write your class's attributes and references.

To support drag-and-drop and cut/copy/paste, you should make sure your classis
serializable. Fieldsthat cannot be serialized (or that you don’t want to be
serialized, such as cached information) you should declare transient and make
sure your code can reconstruct the needed information when the field isnull in
the copied object.

Y ou will need to override layoutChildren in order to reposition and/or resize
some or al of the area’ s child objects when the area or some of its children
change position or size. The layoutChildren method is called after the areais
resized to do the actual work.

Y ou may wish to override getL ocation and setL ocation, if the natura position
of the node isn't the top-left corner

Y ou may wish to override setBoundingRect to prevent the object from being
moved to certain positions or from being sized to certain dimensions

Similarly you may wish to override handleResize to constrain the user’s
interactive resizing of the object, if it is Resizable

Y ou may wish to override doM ouseClick in order to pass on a mouse click to
non-Selectable children, such as JGoText objects that the user wants to edit in-
place.

Please examine the source code for the example nodes for a better understanding of the
many features that JGo makes possible.

50

Undo and Redo

6. UNDO AND REDO

JGo makesit easy for programmers to build graphical applications that display
relationships between objects and that allow users to change those relationships with little
effort. Because users can make massive changes so easily, awell-designed application
should also allow usersto reverse the consequences of unintended changes.

JGo has reimplemented the needed functionality from the undo framework provided by
Swing, and adopted it for all JGo-defined changes to documents and their objects. But if
you want to support undo and redo in your application, you will need to do five things:

e Signal any change to any application-specific document state.
e Perform the undo and redo for any such change.
e Set the undo manager for the document.
. eDdE‘)CI are groups of changes that the user will want to consider asinglelogical
It.
¢ Implement the user-interface commands to alow usersto perform an undo or a
redo, with the appropriate appearance.

The built-in support for undo in JGo only applies to documents and document objects.
Changesto views, such as selection and view position, are not considered to be edits to
the document, and therefore are not tracked for undo and redo.

UndoableEdit and JGoDocumentChangedEdit

The basic concept isthe UndoableEdit, an interface that describes an object that
represents a change to a document and the ability to undo and redo that change.

A change to adocument means that some part of the document’ s state has been altered.
Thisincludes changing the values of any properties of a document, adding JGoObjects
to a document, removing them, and changing any properties or parts of any document
objects.

If you want to add undo and redo functionality to your application, you must make sure
that your JGoDocument and JGoObj ect extensions faithfully signal any state changes
by calling JGoDocument .fireUpdate or JGoObject.update respectively, and that your
extensions correspondingly implement the copyOldValueFor Undo,

copyNewValueFor Redo, and changeValue methods.

The JGo Package 51 Copyright © Northwoods Software

JGo User Guide

Not all document state need participate in this undo framework. However, you and your
users must be willing to live with the inconsistencies that might result when the user

makes a change and a later undo does not restore the state faithfully. You may find that
some state currently associated with a document really belongsin the app or in the view.

Extending JGoDocument

52

The Flower example includes a representative document extension: adding a name
property in the ProcessDocument class. The class, with parts elided for clarity, looks
like the following code:

public class ProcessDocunment extends JGoDocunent

{

public ProcessDocunent ()
{ /'l enable undo/redo nenory for this docunent
set UndoManager (new JGoUndoManager ()) ;

/1 Nanme property
public String getName()

{
return nyName;

public void setNane(String newnane)
{
String ol dNane = get Nane();
i f (!ol dNane. equal s(newnane)) {
myName = newnane;
fireUpdat e(NAME_CHANGED, 0, null, 0, ol dNare);

/1 copy current state
public void copyNewval ueFor Redo(JGoDocunent ChangedEdit e)
{
switch (e.getHint()) {
case NAME_CHANGED:
e. set Newval ue(get Nane()) ;
return;
defaul t:
super. copyNewval ueFor Redo(e) ;
return;

Undo and Redo

/1 actually performthe undo or redo
public void changeVal ue(JGDocunent ChangedEdit e, bool ean undo)
{
switch (e.getHnt()) {
case NAME_CHANGED:.
set Name((String)e. get Val ue(undo)) ;
return;
def aul t:
super. changeVal ue(e, undo);
return;

}
}

/1 Event hints
public static final int NAVE CHANGED = JGoDocumrent Event . LAST+1;

/1l State
private String nyName = "";
}

The getName and setName methods of course define the name property for the
document. What is noteworthy is that setName makes sure that there redlly is a change
before setting the interna myName field and then calling fireUpdate.

Thecal to fireUpdate passes a hint, NAME_CHANGED, and the old value, held in
oldName. It isimportant that the hint be unique within the class and all of its
superclasses.

It isalso required that the updating occur after the change has happened, and that the
update event listener is able to retrieve the previous value. Normally the previous value
is passed along as part of the document event. The reason for the requirement that the
previous value be accessible is that the document listener responsible for undo/redo needs
to record the values both before and after an edit. These values are used to construct a
JGoDocumentChangedEdit, which implements UndoableEdit.

JGoDocumentChangedEdit getsthe before and after values from the
JGoDocumentEvent that is generated from a change’ s call to fireUpdate. In most cases
the previous value isjust fine; however if the valueis areference to an object that might
be modified by further edits, it isimportant that the JGoDocumentChangedEdit keeps a
true copy of the old value, rather than just areference to something whose relevant state
may have changed. Thusthe JGoDocumentChangedEdit constructor callsthe
copyOldValueFor Undo method, which allows the class to decide whether the previous
value needs to be copied for safekeeping. Many classes do not have any kinds of changes
where the previous value will need to be copied, so they do not bother to override
copyOldValueForUndo.

JGoDocumentChangedEdit getsthe new value by calling the copyNewValueFor Redo
method. Each class that extends the undoable document state must override this method
to handl e the class-specific changes to get the new (current) values. In the example

The JGo Package 53 Copyright © Northwoods Software

JGo User Guide

above, it just needs to remember the value of getName(). For change hintsthat don't
belong to this class, the method should call the super method.

Finally, each class must override changeValue in order to perform the undo or redo,
depending on the value of the boolean argument. For convenience the
JGoDocumentChangedEdit.getValue method al so takes the same undo parameter to
decide whether to return the old/before value or the new/after value. In the example
above, the method just needs to call setName to effect the change. Again, for change
hints not belonging to this class, the method calls the super method.

For efficiency and for convenience the previous value of a JGoDocumentEvent, and the
old and new values of a JGoDocumentChangedEdit are not ssimply Objects, but a
pairing of an int and an Object. For those properties that can be represented efficiently
by an int, you can use that instead of boxing the integer by creating an Integer. (For the
common case of boolean values, boolean versions of these methods are provided by
JGoDocumentChangedEdit.) For those properties that can be conveniently represented
by an integer and an object (for example a change to an element of a vector), you can use
both.

Extending JGoObject subclasses

54

For a change to an object, the hint is JGoDocumentEvent. CHANGED. However, there
is no way for the document to know how to remember the old or new valuesfor any
particular sub-hint, nor how to perform that particular state transition. Instead those
responsibilities are transferred to JGoObj ect, which has the same

copyOldValueFor Undo, copyNewValueFor Redo, and changeValue methods.

The implementation is very similar to that for adding properties to documents. What
followsisthe definition of the ListArea example class, stripped down to essentials
regarding the insets property.

public class ListArea extends JGoArea

{
public JGoObj ect copyObject (JGoCopyEnvi ronment env)

{
Li st Area newobj = (ListArea)super.copybject(env);
if (newobj !'= null) {

newobj . nyl nsets.top = nyl nsets.top;
newobj . nyl nsets.left = nylnsets.left;
newobj . nyl nsets. bott om = nyl nsets. bottom
newobj . nyl nsets.right = nmylnsets.right;

}

return newobj ;
}
/1 extra space around the edges
/1 the space should include roomfor the scroll bar
public Insets getlnsets()

{

Undo and Redo

return nylnsets;

}
public void setlnsets(lnsets x)
{
Insets s = getlnsets();
if (!s.equals(x)) {
Insets ol dl nsets=new Insets(s.top,s.left,s.bottoms.right);
myl nsets.top = x.top;
nylnsets.left = x.left;
nyl nsets. bottom = x. bottom
nylnsets.right = x.right;
updat e(| nset sChanged, 0, ol dlnsets);
I ayout Chi l dren();
}
}

public void copyNewval ueFor Redo(JGoDocunent ChangedEdit e)

{
switch (e.getFlags()) {

case | nsetsChanged: {
/1 copy value so it doesn't get clobbered |ater
Insets s = getlnsets();
e. set Newval ue(new I nsets(s.top,s.left,s.bottoms.right));

return; }
defaul t:
super. copyNewval ueFor Redo(e) ;
return;
}

}
public void changeVal ue(JGoDocunent ChangedEdit e, bool ean undo)
{

switch (e.getFlags()) {

case | nset sChanged:
setlnsets((Insets)e.getVal ue(undo));
return;

defaul t:
super. changeVal ue(e, undo);
return;

The JGo Package 55 Copyright © Northwoods Software

JGo User Guide

/1 Event hints

public static final int |InsetsChanged = JGoDocunent Event. LAST +
10033;

/] State
private Insets nylnsets = new Insets(1, 4, 1, nyBarSize + 4);

}

Note that the setl nsets method makes a copy of the old value before remembering the
new value (also by copying, just in case the argument I nsets value were to be modified
independently). This copy isneeded in order to pass the previous value to the
JGoObject.update method.

Remember that the properties should also be copied in the copyObject method.

Handling Big Changes

56

Keeping track of all these edits is simple enough, but incurs alot of overhead for
detecting the change and constructing the edit. What should you do when you know you
might be making alot of changes and don’t want the repeated overhead?

In the past the only such mechanism was to suspend updates. Calling
setSuspendUpdates(true) would turn off al event notification. After al of the batched
changes were done, you would call setSuspendUpdates(false) to re-enable event
notification, and listeners would have to assume anything and everything had possibly
changed. Thiswastrue both at the JGoDocument level aswell asthe JGoObject level.

Suspending updatesis still possible, but with the introduction of undo managers, thisis
more complicated. The problem is that implementing undo requires getting the state
before the changes. Turning off event notification means that there’ s no way to keep
track of any changesthat are going on. Trying to save all state at the time of the call to
setSuspendUpdates(true) would be horribly inefficient, particularly for documents.
Instead we need to save very targeted state, depending on the kinds of changes that are
expected to occur during the update suspension.

The mechanism that JGo supports is analogous to the fireUpdate/update mechanism
used for notification after achange. The fireForedate/for edate methods are exactly like
fireUpdate/update except they should be called just before a change. For obvious
reasons, the foredate methods don’t need any previous value parameters.

Here is an example of how foredating can be done:

/1 care about undo, so need to call fireForedate here,

/1 so that the before-layout geonetries of all top-Ieve
/1 objects can be renenbered

fireForedat e(JGoDocument Event. ARRANGED, 0, null);

set SuspendUpdat es(true);

| ayout Whol eDi agram() ;

set SuspendUpdat es(f al se);

/1 care about undo/redo, so need to call fireUpdate here;
/1 don’t need to pass previous arrangenent here

Undo and Redo
fireUpdat e(JGoDocunent Event. ARRANGED, 0, null, O, null);

The foredate methods create JGoDocumentEvents whose isBefor eChanging predicate
returnstrue. Listenersthat don't care about notification before a change should ignore
these events; for example, JGoView ignores these events. But JGoUndoM anager,
described below, uses them to remember the state before events.

The copyOldValueFor Undo method, when invoked for the ARRANGED update, is
responsible for getting the old/previous state. Since that stateis not passed in viathe
previous value parameters, it must get it from the edit produced by the foredate event. It
can do that by calling the findBefor eChangingEdit method on
JGoDocumentChangedEdit.

public void copyd dVal ueFor Undo(JGoDocunent ChangedEdit e)

{
switch (e.getHnt()) {

case JGoDocunent Event . ARRANGED:
/1 For an update, there’s no previous value info passed in.
/] However, that information is instead available in the
/1 earlier JGoDocunent ChangedEdit created by the foredate.
/1 In the after/update case, we want to nove the previous
/1 state information fromthe BeforeChanging Edit to this
/] Edit.
if (!e.isBeforeChanging()) {
JGoDocumnent ChangedEdit before =
e. fi ndBef or eChangi ngEdi t () ;
if (before !'=null) {
e. set A dVal ue(bef or e. get Newal ue());

}
}
return,
}
}
The copyNewValueFor Redo and changeV alue methods are implemented normally for
the ARRANGED case. The copyNewValueFor Redo method copies all the current node

and link geometriesinto a vector. The changeValue method sets all the node and link
geometries given the information in a vector.

JGoUndoManager, CompoundEdits and Transactions

The edits implemented by JGoDocumentChangedEdit are very detailed, specific
changes that can be undone and redone. But when a user drags a selection, the user is
changing the positions of possibly thousands of objects. Clearly the user will not expect
that an undo command only move one of those objects back to its earlier location.

The Swing package offers the CompoundEdit classfor keeping track of an ordered list
of UndoableEdits. Each compound edit is composed of all the edits that occur dueto a

The JGo Package 57 Copyright © Northwoods Software

JGo User Guide

58

particular user gesture or command. The compound edits in turn are managed by the
undo manager.

JGoUndoM anager is an extension of UndoM anager. It implements
JGoDocumentListener sothat it can detect al of the changes that happen to a
document, and then record them by producing and collecting
JGoDocumentChangedEditsin the JGoUndoM anager’ s current CompoundEdit.

To control when acompound edit is finished and another one should be started,
JGoDocuments support the notion of atransaction. Call startTransaction before any
changes occur and call endTransaction afterwards. The first detected document change
will open up a new compound edit. All succeeding edits are added to this current
compound edit. A call to endTransaction will close up the current compound edit and
add it to the undo manager’slist of undoable edits.

Generally it isthe view that is naturally responsible for detecting the start of a user action
or command and knowing when it isfinished. Thus the default implementations of many
commandsin JGoView start and end transactions. These methods include:

e copy (start and end)

e cut (start and end)

e paste (start and end)

e drop (start and end)

o doMoveSelection (start and end)

e deleteSelection (start and end)

o startNewLink and startReL ink (start)

o newLink, noNewLink, reLink, and noReLink (end)
e startResizing (start)

¢ handleResizing (end)

e doCancelM ouse and other cancel methods (end)

In addition, some methods such as JGoT ext.doStartEdit and doEndEdit enclose editing
activity within atransaction. However, any code anywhere can start and end transactions
on adocument. When you add your own commands to your application, you will
probably want to wrap any document changing code with atransaction.

Transactions may be nested (e.g. start, start, end, end). Only the final transaction end
causes the compound edit to be closed and added to the undo manager’ slist. Beware
calling startTransaction without a corresponding call to endTransaction, perhaps due
to an exception.

A call to endTransaction requires a String argument that describes that particular
transaction to the user. Thisisthe“presentation name”’. JGoUndoM anager provides
default presentation names for the predefined transactions. These are the only stringsin
the JGo package that should be localized for international applications.

Undo and Redo

Each document that supports undo must have a JGoUndoM anager. Normally each
document will have its own undo manager, but when there are interrelated documents
where one change affects other documents, you may want to share one undo manager
amongst several documents. Calling JGoDocument.setUndoM anager automatically
makes the manager alistener on that document.

A call of endTransaction(false) will discard the current compound edit, rather than
adding it to the undo manager. Unlike atransactional database system, aborting a
transaction in JGo does not automatically undo al of the changes that may have
happened since the transaction start. Thisis because there might not be an undo
manager, or because not all changes are being recorded.

Another difference between transactions with JGo documents and database systemsis
that thereis no prohibition on examining or even modifying documents or their objects
without a preceding call to startTransaction. Thereis no practical way to enforce the
prohibition of reading the data structures.

Defining Menu Commands

JGoUndoManager provides implementations of undo, redo, canUndo, canRedo, and
discar dAlIEdits, that user interface implementations should call.

JGoDocument provides these same methods by delegating to the document’ s undo
manager, if one exists.

The following code is taken from the Flower example. Adding user-interface support for
undo entails calling canUndo to enabl e/disable the command and calling undo to
perform the action. In addition, you may wish to customize the menu item text with the
presentation name.

JMenul t em UndoMenul tem = nul | ;

AppActi on UndoActi on = new AppAction("Undo", this) {
public void actionPerformed(Acti onEvent e)

{
get Vi ew() . get Docunent (). undo();
AppActi on. updat eAl | Acti ons();

}

publ i c bool ean canAct ()

{

return super.canAct () &&
(get Vi ew() . get Docunent (). canUndo());

}
public void updat eEnabl ed()
{

super . updat eEnabl ed() ;

if (UndoMenultem!= null && getView() != null)
UndoMenul t em set Text (

The JGo Package 59 Copyright © Northwoods Software

JGo User Guide

get Vi ew() . get Docunent ().
get UndoManager () . get UndoPr esent ati onNane()) ;

}
1
This code calls getView() to get the currently open child window.

60

Performance Hints

7. PERFORMANCE HINTS

When there are only tens or hundreds of objectsin a document, performanceisrarely a
problem. However, when dealing with many hundreds or thousands of objects, the
programmer should be aware of performance issues.

Don't add an area (node) to the document until the last possible moment—as objects are
added to the area and as they are modified, no document listeners will be notified until
after the area is added to the document.

Another way to avoid alot of updates temporarily isto use

JGoObject.set SuspendUpdates(true) or JGoDocument.setSuspendUpdates(true).
These calls can temporarily avoid notifying listeners about change events, for an
individual object or for a whole document, respectively. Be sureto re-enable listener
notification by calling the method again with afalse value.

Support for undo and redo slows down editing because the undo manager must listen for
document events and construct edits for each change. By default a document does not
have an undo manager, so you should call JGoDocument.setUndoM anager only when
needed. Alternatively you can set the document’s SkipsUndoM anager property,
assuming it is not confusing for the user to do so.

Those undo edits can take up alot of memory. Depending on your application design,
sometimes you may wish to call discar dAllIEdits to save on virtua memory occupied by
al of the edits. Thisis commonly done when the document is saved. You can also
change how much is saved by overriding skipEvent on JGoUndoM anager, or by calling
setLimit.

Try to avoid alocating many Points, Dimensions, and Rectangles that just get thrown
away. For example, to get an object’s X position, call getL eft() instead of
getTopL eft().x.

Interactively dragging many objects together can be sluggish if there are alot of links
connected to the nodes being moved. Thisis particularly true when the cal culation of
new strokes for all those linksis expensive, such as when the JGoL ink properties
AvoidsNodes and JumpsOver and Orthogonal aretrue. It can also betrue for very
complex nodes, such as RecordNodes. Y ou can avoid this continuous overhead during
dragging by setting the JGoView property DragsRealtimeto false. The move, and thus
the recomputation of all attached links, is only done when the user finishes the drag.

Don’'t use Sun's WM/JRE 1.4.0 on Windows. Seethe ...README.txt filefor details.
We recommend using 1.4.1 or later instead.

The JGo Package 61 Copyright © Northwoods Software

JGo User Guide

8. JGO SUPPORT FOR XML AND SVG

JGo provides support for Extensible Meta-Language (XML) and Scalable Vector
Graphics (SVG) in severa ways:

e Write-only support of SV G using the Batik libraries and
com.nwoods.jgo.examples.SVGGoView

e Write-only support of SVG using the JAXP libraries and com.nwoods,jgo.svg

e Read/write support of JGo XML using the JAXP libraries and
com.nwoods.j go.svg

e Read/write support of extended SVG (SVG with JGo XML extensions) using the
JAXP libraries and com.nwoods,jgo.svg

o Read/write support of your own custom XML format using the JAXP libraries as
demonstrated in the com.nwoods.jgo.example.Flower sample application

Each of the above approaches is demonstrated in the com.nwoods.jgo.Flower sample
application and each will be discussed further in the following sections.

SVG Support using Batik and SVGGoView

62

The generation of SV G using com.nwoods.jgo.examples.SVGGoView relies on the
Batik library to reproduce everything drawn to the Graphics2D object associated with a
JGoView as SVG. Thistechnique captures all graphical output at avery low level.

The advantages of this technique include its simplicity and visual accuracy.

The disadvantages of this technique include the inability to read the generated SV G to
reproduce the origina JGoDocument, and inability to extend the generated SV G to
easily include your own elements, attributes, scripts, etc.

To create an SV G document using SVGGoView, simply create a new instance of
SVGGoView and set its Document property to the JGoDocument to be generated as
SVG. Then call the generateSV G method to perform the output. The following method
from the Pr ocessDocument class in the Flower sample application illustrates this
process:
public void storeSV@&(Qutput Stream outs)
t hrows | OExcepti on, UnsupportedQOperati onException
{
SVG&oVi ew svgVi ew = new SVGoVi ew() ;
svgVi ew. set Docunent (t hi s);

JGo Support for XML and SVG
svgVi ew. gener at eSVE out s) ;

}

If your principal requirement is the write-only creation of SV G documents from JGo for
viewing by other applications or browsers, SVGGoView may be your best solution.

XML and SVG Support Using JAXP and the JGo SVG Package

The generation of SV G using the JGo SV G package (com.nwoods.j go.svg) uses the JGo
infrastructure to generate SV G and XML elements closely associated with high level JGo
object classes.

The advantages of this technique include its extensibility and its ability to allow output
filesto be read back into JGo to precisely reproduce the original JGoDocuments.

The disadvantages of this technique include a small additional complexity and a dlightly
less accurate rendering of the JGoDocument as SVG.

The Java API for XML Parsing (JAXP) version 1.2 or later, available from Sun
Microsystems (java.sun.com), is a prerequisite for the use of the JGo SV G Package. The
libraries are built into the 1.4 and later releases.

To create an SV G document using the JGo SV G package, ssimply create a new instance of
DefaultDocument and call the SVGWriteDoc method to perform the output. The
following method from the ProcessDocument class in the Flower sample application
illustrates this process:
public void storeSVGL(CQutputStream outs,
bool ean genXM_Ext ensi ons,
bool ean genSVG
{
Def aul t Docunment svgDonDoc = new Def aul t Docunent () ;

svgDonDoc. set Gener at eJGoXM_(genXM_Ext ensi ons) ;
svgDonmDoc. set Gener at eSVGE genSVG) ;
svgDomDoc. SVGW i t eDoc(outs, this);

}

The two properties (GenerateJGoXML and Gener ateSVG) shown in the above
example control the classes of elements generated by the JGo SV G package. JGo XML
elements are used to describe the JGo classes and their properties. SV G elements are used
to render the JGo graphical elements as SVG. When using the JGo SV G package, you
can determine whether to generate either or both of these element classes by specifying
boolean values for these properties. If only isGenerateJGoXML () istrue, an XML
document will be generated that faithfully serializes a JGoDocument for read/write
purposes, but no SV G elements will be generated and the document will not be viewable
by an SVG viewer. If only isGenerateSVG() istrue, an SV G document will be
generated that allows the JGoDocument to be viewed by SV G viewers, but the
document will not able to be read back into JGo to recreate the original JGoDocument.
If both isGenerateJGoXML () and isGenerateSVG() are true, an SV G document will be
created which is both viewable by SV G viewers and is able to be read back into JGo to
reproduce the original JGoDocument.

The JGo Package 63 Copyright © Northwoods Software

JGo User Guide

64

As mentioned earlier, one of the principal advantages of thistechnique is the ability to
extend both the generated SV G and the JGo XML extensions used for serialization
purposes. In order to create these extensions, you typically need only to override the
SVGWriteDoc and SV GReadObject methods on any subclass of JGoObject you
create. When DefaultDocument.SVGWriteDoc isinvoked, the SV GWriteObject
method is automatically invoked on the JGoDocument and each of the JGoODbjects
contained in that document. By overriding the SVGWriteObject method, you can easily
add your own information. Similarly, when reading an SV G or XML filevia
DefaultDocument.SVGReadDoc, you can override SV GReadODbject to look for your
extensions and recreate the information in your own objects.

The SVGReadObject and SVGWriteObject methods deal with DomDoc and
DomElement parameters. DomDaoc is an interface similar to or g.w3c.dom.Document.
DomElement is aninterface similar to or g.w3c.dom.Element. Theseinterfaces allows
the com.nwoods.j go package to provide methods that manipulate or g.w3c.dom objects
while not requiring the or g.w3c.dom package to be present in order to build or use
com.nwoods,jgo. Methods such as DomDoc.createElement,
DomElement.setAttributes and DomElement.appendChild alow you to easily create
new XML or SVG dements and attributes and add them to your document.

The implementation of these interfaces is provided by the com.nwoods.j go.svg package.
The default implementation of com.nwoods.jgo.DomDoc is
com.nwoods,jgo.svg.DefaultDocument. The default implementation of
com.nwoods.jgo.DomElement is com.nwoods.jgo.DefaultElement. Y ou should be
able to accomplish whatever you need through methods of the DomDoc and
DomElement interfaces, however if you require access to the org.w3c.com objects
themselves, that can be accomplished by casting your DomDoc or DomElement object
to DefaultDocument or DefaultElement and then invoking the
DefaultDocument.getDocument or DefaultElement.getElement methods to get the
actual org.w3c.dom objects.

The following code shows the implementation of JGoRectangle.SVGWriteObject
which is responsible for generating both the XML and SV G elements necessary to
represent a JGoRectangle object.

public void SVGWiteOhject (DonbDoc svgDoc,
DonEl enent j GoEl erent Gr oup)

{
/1 Add JGoRect el enent
i f (svgDoc.JGoXM.CQut put Enabl ed()) {
DonEl enent j GoRect = svgDoc. cr eat eJGoCl assEl enment (
"com nwoods. j go. JGoRect angl e", j GoEl erent G- oup) ;
}
/1 Add SVG rect el ement
i f (svgDoc. SVGQut put Enabl ed()) {

DonEl ement el emrent =
(DonEl enent) svgDoc. creat eEl enent ("rect");

// Add attributes to SVG <rect> el enent

JGo Support for XML and SVG

SVGWiteAttributes(el enent);
j GoEl emrent Gr oup. appendChi | d(el enent);

}

/1 Have superclass add to the JGoObj ect group
super. SVGW i t eObj ect (svgDoc, j GoEl enent Group) ;

}

Note the use of the convenience method DomDoc.cr eateJGoClassElement. This
method will create a DomElement with the tag “JGoClass’ and a“class’ attribute
specifying the class name and append it as the next child node of the specified
DomElement. The class name supplied must be accurate and complete asit will be used
to create an object of the correct type when the SVG XML fileisread back in. Although
the example shown above does not apply any attributes to the created <JGoClass>
element, attributes could easily have been added viathe DomElement.setAttribute
method. Finaly, note that this method calls its superclass so that the superclass can add
its own elements and attributes.

When reading an SVG or XML file using DefaultDocument.SV GReadDoc method, any
<JGod ass> eement encountered will be automatically recognized by the
DefaultDocument.SVGReadElement method. The class attribute of this el ement will
be read and used to create a new instance of this object class from the class name. The
SVGReadObject method will then be invoked on the newly created instance. Attributes
of this element should be read by the DomElement.getAttribute method. Finally, this
method should call its superclass so that the superclass can read its own elements and
attributes.

Typicaly, the attribute val ues specified in SV GReadObject and SVGWriteObject can
be stored as String values. Occasionally, however, the attribute value may need to be a
reference to another JGoODbject specified in the SV G or XML output. This can be
difficult dueto the fact that the referenced JGoObject may or may not have yet been
written out to the XML or SV G document when the referencing object iswritten. The
DombDoc.r egister Refer encingNode method has been created as a convenience for this
situation. In SVGWriteObject when writing such an attribute value, call

register Refer encingNode specifying the referencing DomElement, the Object being
referenced, and the attribute name to use to hold the reference. The DomDoc will
maintain atable of these references and update the DomElements after al the objects
have been created in the DomDoc but before DomDoc has been rendered as SV G or
XML.

When reading an object reference attribute in SV GReadODbj ect, ssmply call
DombDoc.register Refer encingObj ect specifying the referencing Object and the name
and value of reference attribute. The DomDoc will maintain atable of these references
and will invoke JGoObject.SVGUpdateRefer ence passing a string identifying the
reference attribute name and the referenced Object once all objects have been created.
Y ou must override SVGUpdateRefer ence if your subclass has reference to other
Objectsthat are to be saved and restored from SV G or XML.

The JGo Package 65 Copyright © Northwoods Software

JGo User Guide

The following example uses a JGoRectangleto illustrate the format of a generated SVG
JGoObject. Notethat al of the output shown below is automatically generated by JGo.
Y our application need only be concerned with your own extensions.

<g>

<JGod ass cl ass="com nwoods. j go. JGoRect angl e"\ >

<rect hei ght="75" styl e="stroke: bl ack; stroke-
width:1;fill:rgb(255,0,0);" w dth="75" x="65" y="71"/>

<JGod ass cl ass="com nwoods. j go. JGoDr awabl e"

dr awabl ebrush="j goi d1" drawabl epen="j goi d2"

enbeddedpenbrush="f al se"/ >

<JGod ass cl ass="com nwoods. j go. JGoCbj ect" obj flags="1054"/>

</ g>

Note that the entire JGoObj ect is enclosed in agroup (<g>). Each subclass of the
JGoODbject is described by a<JGoCl ass> element, starting with the most specific
class and moving to the more general. Each <JGoCl ass> element hasa"class" attribute
that defines the class name. Each <JGoC ass> element may also have severa other
attributes that uniquely describe that state of that class. Following the <JGoCl ass>
element, each class may also generate any other elements that are required, including
representations of contained objects and standard SV G elements such as the <rect>
element shown in the above example. The information contained inthe <JGoC ass>
elements allows us to accurately save and restore all the information in a particular
JGoObject subclass.

For aworking example of using the JGo SV G package to read and write XML or SVG
files, refer to the com.nwoods.jgo.examples.Flower sample application. Look for
sections of codein ProcessDocument commented with / * SVG ..*/ . Removethe
comments to activate the contained code sections and rebuild the Flower sample
application. The“file/save as’ and “file/open” menu itemsillustrate saving and restoring
the application datain a variety of formats.

For aformal description of the XML elements and attributes written by the JGo SV G
package, refer to the file com.nwoods.jgo.svg/xsvg.dtd.

Custom XML Support Using JAXP

66

The generation of your own custom XML using only the Java API for XML Parsing
(JAXP) available from Sun Microsystems (java.sun.com) is another viable alternative.

The advantages of this technique include its conciseness, as well as the ability to exercise
complete control over the XML content.

The disadvantages of this technique include the difficulty of generating al your own
SVG elements (if SV G output is necessary) and a slight additional complexity.

It is often unnecessary to save all the state information of every object in JGo (asis done
by the JGo SV G package). Typicaly, one needs only to save enough information to
allow your application to recreate the JGo objects and other application information.

To create an XML document using JAXP, you must first create an or g.w3c.Document
object. Typicaly, you would next traverse al of the top-level JGoObjectsin your
JGoDocument and populate the Document with org.w3c.Element objects, with
appropriate properties set on these objects to represent those JGoObjects. Findly, you

JGo Support for XML and SVG

would create ajavax.xml.transform.Transformer object to transform the Document to
XML output. The following method from the ProcessDocument class in the Flower
sample application illustrates this process:
public void storeXM(Qutput Stream outs)
t hrows | OExcepti on, UnsupportedQperati onException

Docunment docunent = null;

try {
Docurent Bui | der Factory factory =
Docurent Bui | der Fact ory. newl nst ance() ;

Docurent Bui | der buil der = factory. newDocunent Bui | der () ;
docunent = buil der. newbDocunent () ;

El ement process =
(El emrent) docunent . cr eat eEl enent (processTag) ;

process. set Attri bute("name", getName());
process. setAttribute("location", getLocation());

process. set Attribute("l astnodei d",
I nteger.toString(mylLast Nodel D)) ;

process. setAttribute("ortholinks", isOthogonal Fl ows()
? "1 "0");
docunent . appendChi | d(process);

/1 first produce all of the nodes
JGoLi st Posi ti on pos = getFirstObjectPos();
while (pos !'= null) {

JGoObj ect obj = get Obj ect At Pos(pos);

pos = get Next Obj ect PosAt Top(pos) ;

if (obj instanceof ActivityNode) {
Acti vityNode node = (ActivityNode)obj;
El ement act = docunent.createEl ement (activityTag);
act.setAttribute("id", Integer.toString(node.getlX)));

act.setAttribute("type",
I nteger.toString(node. getActivityType()));

act.setAttribute("x",
I nteger.toString(node. getLeft()));

act.setAttribute("y", Integer.toString(node.getTop()));
act.setAttribute("text", node.getText());
process. appendChi |l d(act);

/1 then produce all of the Iinks

The JGo Package 67 Copyright © Northwoods Software

JGo User Guide

pos = getFirstbjectPos();

while (pos !'=null) {
JGoObj ect obj = get Qbj ect At Pos(pos) ;
pos = get Next Obj ect PosAt Top(pos) ;

if (obj instanceof FlowLink) ({
Fl owLi nk 1ink = (Fl owLi nk) obj ;

El ement flow = docunent. creat eEl enent (fl owTag) ;

flow setAttribute("froni,

Integer.toString(link.getFromNode().getlX)));

flow setAttribute("to",

Integer.toString(link.get ToNode().getlD()));

flow setAttribute("text", link.getText());
process. appendChi | d(fl ow);

}
} catch (ParserConfigurati onException pce) {

/1 Parser with specified options can't be built
pce. print StackTrace();
}

if (document != null) {

try {
Transformer Factory transfornerFactory =
Tr ansf or mer Fact ory. new nst ance() ;

Transformer serializer =
t ransf or mer Fact ory. newTr ansf or ner () ;

serializer.setQut put Property(CQutputKeys. METHOD,
serializer.setQutput Property(QutputKeys. | NDENT,

serializer.transfornm new DOVSour ce(docunent),
new StreanResult(outs));

} catch (Exception x) {
X. printStackTrace();

"xm)
"yes");

A similar set of operation are required to read back in the generated custom XML. Refer
to the ProcessDocument.loadXM L method for a detailed example.

The com.nwoods.j go.examples.Flower sample application demonstrates this technique
(aswell as all the other techniques described in this chapter). Look for sections of code

in ProcessDocument commented with / * XML

..*/ . Remove the comments to activate

the contained code sections and rebuild the Flower sample application. The “file/save as’
and “file/open” menu items illustrate saving and restoring the application datain a variety
of formats.

68

Building a Sample Application Using JGo Beans

9. BUILDING A SAMPLE APPLICATION USING JGO BEANS

Building a JGo application using a standard Java devel opment environment and the JGo
Java beans (JGoView, JGoPalette, and JGoOverview) isquite simple. Although the
precise steps required differ according to your specific development environment, the
general concepts remain the same:

o Register the JGo beans with the devel opment environment
o Create anew project
o Visually edit the user interface as required

o Drag & drop JGoView, JGoPalette, and/or JGoOverview beansto your
user interface

o Edit bean properties

e Add event handlersto customize user interface behavior
0 Add JGo documentChanged listeners
0 Add JGo viewChanged event listeners

In this chapter we will describe the generd process of creating a simple JGo application.
Specific examples will refer to the Eclipse devel opment environment, including the
Visua Editor (VE) plug-in, although the genera concepts should apply equally well to
any Java development environment with support for Java beans. The complete source
code for this application is also included in the JGo kit under the
.../jgo/com/nwoods/jgo/exampl es/SampleAppSWT folder.

The sample application will provide a pa ette of objects (JGoPalette), including JGo
sample objects as well as objects customized according to the needs of our application.
The sample will support drag and drop of these objects from the palette to a scrolled,
scalable window (JGoView). A third pane of the application will provide a miniature
overview window showing the entire canvas and the region currently visible in the
JGoView window. The application will provide cut, copy, and paste clipboard support,
undo and redo, serialization to and from an extended Scalable Vector Graphics (SVG)
XML format file, and automatic layout of the graph produced by our users. Double-
clicking on any item in the JGoView window will cause a dialog to appear displaying
more detailed properties for that object. Naturally, thisis only one instance of the kinds
of applications that can be created using JGo and the JGo beans, but hopefully this one
instance will provide some insight into development commonly done for many JGo
applications.

The JGo Package 69 Copyright © Northwoods Software

JGo User Guide
An example use of the finished application follows:

Copy [
cut FedMode GreenMNode Blue Mode

Green Mode

Blue Modg Fed Mode

Layauk

e
{ %)

Green MNode

BElue MNode oo

Gree‘rjm[;dude F

Register the JGo Beans with the Development Environment

We gtart by registering the JGo beans with the development environment. To register
beans with a development environment we must first define the library containing the
beans. JGo providesthree different bean classes, JGoView, JGoPalette, and
JGoOverview. All three of these beans are defined in the com.nwoods.j go package and
are packaged inthe JGo. j ar file. In addition, this particular sample application will
utilize the com.nwoods.jgo.layout and com.nwoods.jgo.svg packages. These packages
do not define any additiona beans, but provide the auto-layout and XML/SVG
serialization capabilities demonstrated in the later steps of the sample application. These
packages are packaged inthe JGoLayout . j ar and JGoSVG. | ar files, respectively.

In the Eclipse environment, we need only insure that the above JAR files areincluded in
the Java Build Path.

For new projects, this can be accomplished by using the File/New/Project... menu entry
and selecting the “Librariestab” on the “ Java Settings’ page of the wizard. Pressthe
“Add External JARS’ button and select the JGo JAR files specified above.

For existing projects, this can be accomplished by selecting Project/Properties from the
menu. In the pop-up window that appears, select “Java Build Path” in the window on the
left and select the “Libraries’ tab. Pressthe“Add External JARS’ button and select JGo
JAR files specified above.

Visually Construct the User Interface

Once the JGo JAR files have been added to the Eclipse project’ s java build path, we can
begin creating our JGo sample application.

70

Building a Sample Application Using JGo Beans

Eclipse SWT applications will contain one or more top-level containers, typicaly either
Shells or Composites. A hierarchy of visual components will be added to these top-level
containers to create the user interface that our end-userswill see. Because user interfaces
are inherently visual, most Java devel opment environments enable the developer to
construct the user interface visually rather than by directly writing code. Typically, the
components of the interface are dragged from component pal ette and dropped on the user
interface under construction.

To build our sample application we will start by creating a new project that includes the
SWT libraries and the JGo libraries. In Eclipse with the VE visual editor, this can be
accomplished by first selecting the “ File/New/Project...” menu entry and selecting the
“Java Project” wizard. Fill inthe“Project Name” and press the “Next” button. Select the
“Libraries’ tab and pressthe “Add Library” button. Select the “ Standard Widget Toolkit
(SWT)” and pressthe “Next” button and then the “Finish” button. Next pressthe “Add
External JARS’ button and add the JGo JAR files (JGo.jar, JGoL ayout.jar, and
JGoSVG.jar). Click the“Finish” button to conclude the “ Java Project” wizard.

Next, we will add a single top-level Shell component to the project by selecting the
File/New/Visua Class’ menu entry. Specify the “ Source Folder” for the project and
specify “SWT Shell” asthe style of the component. Specify “ SampleAppSWT” asthe
name of the new Java classto create and select “ public static void main” and * Inherit
abstract methods’ as the method substo be created. Click the “Finish” button to
conclude the “Visual Class’ wizard. A new class named “ SampleAppSWT” is created
with amain method that creates an instance of a Shell component named sShell..

At this point you should see a divided editing window showing the visual editor for
SampleAppSWT .java on the top and the Java code that implements that appearance on
the bottom. The Eclipse VE Palette window should aso be visible containing the SWT
controls and SWT containers that can be selected and dropped on the visua editor.

We want to divide the SampleAppSWT Shell into two separate panes by dripping a
SashForm onto the sShell. Click on sShell in the visual editor and specify FillL ayout
for the layout property shown in the property editor. Click on SashForm inthe SWT
Containers section of the palette and drop a SashForm on sShell in the visual editor. A
SashForm with the default name sashForm is created as a child of sShell. Specify
BORDER for the border property of sashForm. Specify HORIZONTAL for the
orientation property of sashForm.

Next we sub-divide the |eft pane of the SashForm into two panes by dropping another
SashForm onto the first SashForm. Another SashForm named sashForml is created as
achild of sashForm. Specify BORDER for the border property of sashForml. Specify
VERTICAL for the orientation property of sashForm1.

Next, we will drag and drop the JGo beansinto these panes. We will place the
JGoOverview bean in the upper-left pane, the JGoPalette bean in the lower-left pane,
and the JGoView bean in the right pane.

Select “Choose Bean” in the visual editor palette. Select SWT for the qualifier and type
“jgo” into the name field to list all SWT beans starting with the characters “jgo”. Select
the JGoView bean and press OK. Now drop the JGoView on sashForm by moving the
cursor dowly over the edge of the window displayed in the visual editor. Look for atool
tip to be displayed indicating the cursor is over sashForm (not sashForm1) and then click

The JGo Package 71 Copyright © Northwoods Software

JGo User Guide

72

to drop the JGoView onto sashForm. A JGoView named jGoView is created as a child
of sashForm.

Select “ Choose Bean” in the visual editor palette. Select SWT for the qualifier and type
“jgo” into the name field to list the SWT beans starting with “jgo”. Select the
JGoOverview bean and press OK. Drop the JGoOver view onto sashForm1 by moving
the cursor dowly over the edge of the left pane of the window. Look for atoal tip to be
displayed indicating the cursoir is over sashForml and then click to drop the JGoPalette
onto sashForml. A JGoOverview named jGoOverview is created as a child of
sashForm1.

Select “Choose Bean” in the visual editor palette. Select SWT for the qualifier and type
“jgo” into the name field to list the SWT beans starting with “jgo”. Select the
JGoPalette bean and press OK. Drop the JGoPalette onto sashForml. A JGoPalette
named jGoPalette is created as a child of sashForml.

The resulting window should appear as follows:

I Shell

Using the property editor in the Eclipse Visual Editor, modify the “showSamplel tems’
property of the JGoPalette to be “true”. Thiswill cause asmall variety of sample nodes
to be shown in the JGoPalette.

Modify the “verticalScroll” property of the JGoPaletteto be“V_SCROLL”. Thiswill
cause avertical scroll bar to appear in the palette if the window is not large enough to
display all the objectsin the palette.

Next we would normally modify the “observed” property of the JGoOverview to be the
name of the JGoView component by using the property editor. However, the JGoView
instance must be created before setting it as the object of the Observed property. Because
of the order in which these objects are created by the Eclipse visual editor, we must set
this property by adding a call to setObserved() in the createSashFor m() method of
SampleAppSWT. In addition, we'll add some code to this method to specify the relative
size of the SashFForm panes. The resulting createSashFor m() method will look as

Building a Sample Application Using JGo Beans
follows:

private void createSashForn() {
sashForm = new SashForn(sShel |, SW. BORDER);
creat eSashFor mL();
createJGoVi ew) ;
j GoOvervi ew. set Gbserved(j GoVi ew) ;
int weights[] = newint[2];
wei ghts[0] = 30;
wei ghts[1] = 70;
sashFor m set Wi ght s(wei ght s) ;

Build and run the program. Drag and drop two JGoBasicNodes onto the JGoView.
Create anew link by dragging alink from the port of one JGoBasicNode to the port of
the other. The results should appear as follows:

I Shell

% |

JGoBasicMode

JGoBasicHode st

-

JGolcanicHode

At this point we have already created a simple application illustrating some of the default
behaviors supported by JGo, including drag and drop, selection, and multiple selection.
Nodes can be created by dragging from the pal ette and dropping onto the main view, or
by control-copying selected nodes. Links can be created by dragging alink between
ports on the objects.

Add Event Listeners

By adding event listeners, we can further modify the default behavior of the application
and react to end-user interaction.

WEe'll begin by adding a documentChanged event listener on the JGoView. This event
listener will be called in response to any modification of the JGoDocument or any of the

The JGo Package 73 Copyright © Northwoods Software

JGo User Guide

74

JGoObjects contained in the document, including creation and deletion of JGoObjects.
We will modify any link asit is created to add an arrowhead.

For convenience, start by inserting the following lines at the top of
SampleAppSWT java:

i mport com nwoods. j go. *;

i mport com nwoods. j go. | ayout. *;

i mport com nwoods. j go. svg. *;

i mport org.eclipse.w dgets.*;

i mport org.eclipse.swt.events.*;
i mport java.io.*;

In the Eclipse Visual Editor, right click on jGoView in the right pane and select
“Events/Add Events...” to view the available event listeners. Click on
documentChanged and add an event listener. A documentChangedL istener class will
be automatically created and the following empty method will be added to the
documentChangedL istener:

public void docunment Changed(JGoDocunent Event e) {
}

We will add code to this method to look for new JGoL ink objects being created, and to
modify the appearance of those links to include an arrowhead on the “to” end of the link
asfollows:

public void document Changed(JGoDocunent Event e) {
switch (e.getHnt()) {
case JCGoDocunent Event . | NSERTED:
if (e.getJGoObject() instanceof JGoLink) {
JGoLink link = (JGoLink)e. getJGoOhject();
i nk. set ArrowHeads(fal se, true);
}

br eak;

Build and run the program again. Drag and drop two JGoBasicNodes onto the
JGoView. Createanew link by dragging alink from the port of one JGoBasicNode to
the port of the other. The results should appear asfollows:

Building a Sample Application Using JGo Beans

JGoBasicHode

o JGoBasicHode

®

JGoBasicHode i

=]

JGolconicMode

Next we'll add aviewChanged event listener on the JGoView. This event listener will
be called in response to any modification of the JGoView, including any user interaction
with the objects shown in the view, such as selection, click, or double-click. We will
react to any double click on an object by displaying a message dialog identifying the
class of the object upon which the user double-clicked.

In the Eclipse Visud Editor, right click on jGoView in the right pane to select it for
editing and select “EventsAdd Events...” to vew the available event listeners. Click on
viewChanged and add an event listener. A viewChangedListener classwill be
automatically created and the following empty method will be added to the
viewChangedL istener:

public void vi ewChanged(JGoVi ewEvent e) {
}

We will add code to this method to look for double-click events on JGoObjects or on the
background and display an appropriate message dialog as follows:
public void viewChanged(JGoVi ewEvent e) {
MessageBox b = new MessageBox(sShel |);
switch (e.getHint()) {
case JGoVi ewkEvent . DOUBLE CLI CKED:
b. set Message(e. get JGoOhj ect ()
. get TopLevel nj ect().getC ass().getNane());
b. open();
br eak;
case JGoVi ewEvent . BACKGROUND DOUBLE CLI CKED:
b. set Message(" Doubl e-cl i cked on background");

The JGo Package 75 Copyright © Northwoods Software

JGo User Guide

b. open();
br eak;

}

Build and run the program again. Double-click on one of the nodes dragged to the
JGoView. The resulting window should appear as follows:

JGoBasichHode

(®

JGoBasicHode

*

L}
\l‘) com.nwoods.jgo, JEoBasichode

= |

JGolconicHode

[

JGoBasicHode
(=)

[£

Next we'll add a keyPressed event listener on the JGoView. This event listener will be
called in response to any key being pressed while the JGoView hasfocus. We will look
for the delete key being pressed and react by deleting the currently selected objects, if
any.

Right click on jGoView to select it for editing and select “ EventsAdd Events...” to view
the available event listeners. Click on keyPressed and add an event listener. A
keyAdapter classwill be automatically created and the following empty method will be
added to the keyAdapter:

public void keyPressed(KeyEvent e) {
}

We then add code to this method to look for a Delete key being pressed and then remove
the currently selected objects from the document:

Publ i c keyPressed(KeyEvent e) {
switch (e.keyCode) {
case SW. DEL:
j GoVi ew. del et eSel ection();

76

Building a Sample Application Using JGo Beans

br eak;

Build and run the program again. Select several nodes and links. Use shift-click to
extend the selection, ctrl-click to toggle the selection, or use rubber band selection
(mouse down and drag to select al objects in enclosed rectangle). Pressthe Delete key to
delete all the selected objects.

Customize the Palette

Naturally, we'll want our own set of nodes to appear in the palette. The nodes displayed
when the showSampleltems property is set to true are primarily useful for boot strapping
and testing purposes when first creating an application. At this point we're ready to set
this property to false and add our own instances of nodes.

The nodes we create will typically be subclasses of JGoNode or JGoArea. The
JGoArea class collects the various individual parts of our object (images, text, ports,
etc.) so that they behave asa single entity. We may wish to find an object class defined
in the com.nwoods.jgo or com.nwoods.j go.examples package that has similar
appearance and behavior to that which we are attempting to create and either make a new
similar class or subclassin order to create our new node class. Looking at the
com.nwoods.jgo.examples.demolSWT sample application can be helpful in order to
explore the various different node types and their behavior.

For simplicity in this example, we will create a subclass of JGoBasicNode that adds a
single additional integer field. We'll begin by selecting File/New/Classin the Eclipse
editor. Specify the same Source Folder and Package you have used for the rest of the
sample application. Specify “SampleNode” for the name of the new class. Specify
“com.nwoods.jgo.JGoBasicNode” as the name of the superclass. You canthenfill inthe
body of this class asfollows:

i mport com nwoods. j go. *;
public class Sanpl eNode extends JGoBasi cNode {
public Sanpl eNode() {
}
publ i c Sanpl eNode(String |abel) {
super (| abel) ;
}
public int getlntVal(){
return nylnt;

}

public void setlntVal (int iVal){
nylnt = iVal;

}

private int nmylnt;

The JGo Package 77 Copyright © Northwoods Software

JGo User Guide

}

In the initialization code for the JGoPalette in the createJGoPal ette() method of
SampleAppSWT we can now replace the line:

j GoPal ettel. set ShowSanpl el tems(true);

with the following code to create three different colored instances of our new
SampleNode class:

/1 jCGoPal ette.set ShowSanpl eltemnms(true);

Sanpl eNode nodel = new Sanpl eNode(" Bl ue Node");

nodel. set Brush(JGoBr ush. makeSt ockBr ush(JGoBr ush. Col or Bl ue)) ;
nodel. setlntVval (1);

Sanpl eNode node2 = new Sanpl eNode(" Red Node");

node?2. set Brush(JGoBr ush. makeSt ockBr ush(JGoBr ush. Col or Red)) ;
node2. setlntVal (2);

Sanpl eNode node3 = new Sanpl eNode(" G een Node");

node3. set Brush(JGoBr ush. makeSt ockBr ush(JGoBr ush. Col or Green)) ;
node3. setlntVal (3);

j GoPal ette. get Docunent (). addObj ect At Tai | (nodel) ;

j GoPal ette. get Docunent (). addObj ect At Tai | (node2) ;

j GoPal ette. get Docunent (). addObj ect At Tai | (node3) ;

j GoPal ette.layoutltens(); |jGoPalette.layoutltens();

WEe'll also modify the message that’ s displayed when our user double-clicks on anodeto
display the “mylnt” value added by our SampleNaode subclass by modifying the
viewChanged() event handler asfollows:

public void vi ewChanged(JCGoVi ewEvent e) {
MessageBox b = new MessageBox(sShel l);
switch (e.getHnt()) {
case JGoVi ewEvent . DOUBLE CLI CKED:
JGoOhj ect obj = (JGohj ect)e. get JGobj ect ()
. get TopLevel hj ect();
if (obj instanceof Sanpl eNode) {
Sanpl eNode node = (Sanpl eNode) obj ;
b. set Message(node. get Text () + "
+ Integer.toString(node.getlintVval()));
}
el se {
b. set Message(e. get JGoOhj ect ()
. get TopLevel nj ect().getC ass().getNane());

78

Building a Sample Application Using JGo Beans

b. open();
br eak;
case JGoVi ewEvent . BACKGROUND DOUBLE CLI CKED
b. set Message(" Doubl e-cl i cked on background");
b. open();
br eak;

Build and run the program again. Double-click on one of the nodes dragged to the
JGoView. The resulting window should appear as follows:

M Shell

Blue Nudel

Fed MNode

IEiIue Mode
(®

\5) Blue Mode O

Green Mode

Note that the integer value displayed for the blue node is O rather than 1. Thisis because
anew copy of the SampleNode is created when it is dropped in the JGoView window.
By default, JGo will make a copy of an object whenever that object is:

e involved in adrag and drop operation

e involved in aclipboard operation

The aobjects are copied by invoking the virtual JGoObject.copyObject method. Because
we have created our own SampleNode class and have added a data member to that class,
we must override SampleNode.copyObject to copy the additional data as follows:

public JGoObj ect copyObject (JGoCopyEnvi ronment env) {
Sanpl eNode newobj = (Sanpl eNode) super. copyOhj ect (env);
newobj . nyl nt = nylnt;
return newobj ;

}

Build and run the program again. Double-click on one of the nodes dragged to the
JGoView. The resulting window should appear as follows:

The JGo Package 79 Copyright © Northwoods Software

JGo User Guide

B Shell e Y =169

‘°'\—___-+ i
Blue Mode

Fed Mode

Elue Maode

]

ot
“y Blue Mode 1
Fed Mode
Green Mode =

(&

Add Clipboard Support

Next we'll add amenu bar to the sample application. We'll create aMenu called mb and
populate it with clipboard commands. Add the following code after the creation of the
sShell Shell in the createSShell() method:

/] Create nenu bar

Menu nb = new Menu(sShell, SW.BAR);

sShel | . set MenuBar (mb) ;

/1l Create File menu

Menultem m Fil e = new Menultem(nb, SWI. CASCADE) ;
Menu fileMenu = new Menu(sShell, SW. DROP_DOM) ;

m File. set Menu(fil eMenu);

mFile. setText ("&File");

/] Create Edit menu

Menultem m Edit = new Menultenm(nb, SW. CASCADE);
Menu edit Menu = new Menu(sShel |, SWI. DROP_DOM) ;

m Edi t. set Menu(edi t Menu) ;

m Edit.setText ("Edit");

/1l Create Edit menu itemns

Menul t em m Copy = new Menul ten{edi t Menu, SWI. NONE) ;
nm Copy. set Text (" Copy");

Menul tem mi Cut = new Menul t em(edi t Menu, SW. NONE) ;
m Cut.set Text ("Cut");

Menul t em m Paste = new Menul t em(edi t Menu, SWI. NONE) ;
nm Past e. set Text (" Paste");

80

Building a Sample Application Using JGo Beans

The resulting window should appear as follows:

i_uk
> Blue Mode

Paste

FedMNode

Blue Mode e
FedMode
Greewude v

Next we'll add SelectionAdapter event listeners for the “ Copy”, “Cut”, and “ Paste”
menu items. These event listeners will be called in response to the user selecting these
commands from the menu.

Add the following code to the menu creation code:

/1 Add Menu event handl ers
nm Copy. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void w dget Sel ect ed(Sel ecti onEvent event) {
j GoVi ew. copy();

1)
m Cut . addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void wi dget Sel ect ed(Sel ecti onEvent event) {
j GoVi ew. cut () ;
}
1)
nm Past e. addSel ecti onLi st ener (new Sel ecti onAdapter() {
public void w dget Sel ect ed(Sel ecti onEvent event) {
j GoVi ew. paste();

1)

The JGo Package 81 Copyright © Northwoods Software

JGo User Guide

Build and run the program again. Select several nodes and links. Select the “ Copy” or
“Cut” command to move the selected items to the clipboard. Select the “Paste” operation
to create new copies of the items on the clipboard. Note that the pasted items are initially
created in the same relative location they were in when copied to the clipboard. Also
note that when you double-click on the pasted objects, the integer value associated with
the SampleNode objects are preserved. The same copyObject method that we
implemented to support copying the additional data membersin our SampleNode class
for drag and drop operations also works for clipboard operations.

Add Undo/Redo Support

We'll start by adding the menu items for undo and redo to the menu bar by adding the
following code to the createSShell () method:

Menul t em m Undo = new Menul t en{ edi t Menu, SWI. NONE) ;
m Undo. set Text (" Undo");
Menul t em mi Redo = new Menul t en(edi t Menu, SWI. NONE) ;
nm Redo. set Text (" Redo");

The updated menu bar should appear as follows:

H Shell
File: =alls

w | Copy
Cuk

Paste Elue Mode

Redao

Fed MNode

Blue Mode ip-

Fed Mode

Green MNode
(o

Just as before, we now add the selectionAdapter event listeners for these commands:

m Undo. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void w dget Sel ect ed(Sel ecti onEvent event) {
j GoVi ew. get Docunent () . undo() ;

}
82

Building a Sample Application Using JGo Beans
1)

nm Redo. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void w dget Sel ect ed(Sel ecti onEvent event) {
j GoVi ew. get Docunent (). redo();

1)

We must also add a JGoUndoM anager to the JGoDocument in order to control the
undo and redo operations. We will simply add a default JGoUndoM anager in the
initialization code for jGoView (the createJGoView() method) asfollows:

JGoUndoManager undoManager = new JGoUndoManager () ;
j GoVi ew. get Docunent () . set UndoManager (undoManager) ;

Build and run the program again. Perform severa operations, such as drag and drop, link
nodes, drag nodes from one location to ancther. Verify that the “Undo” and “Redo”
menu items faithfully undo and redo these operations.

Because our sample application does not yet support any modifications to our
SampleNode data member (mylnt) after the object has been added to the JGoDocument,
thereis no need to track changesto this item or save or restore its previous val ues.
However, in the interests of a more robust example, let us assume that in the future we
wish to alow changesto this value and that al such changes will occur as aresult of
calling SampleNode.setIntVal(int iVal). We would then need to define the following
methods in SampleNode to track changes to this value and modify the value during undo
and redo operations:

public void setlntVal (int iVal){
int oldval = nylnt;
if (oldval !'=iVal) {
nylnt =i Val;
/1 Signal state change to support undo/redo
updat e(I nt Val Changed, ol dval, null);

}
public void copyNewval ueFor Redo(JGoDocunent ChangedEdit e)

{
/1 Copy the current state before doing the undo so it can
/1 be reset in a future redo operation
switch (e.getFlags()) {
case | ntVal Changed:
e. set Newval uel nt (nylnt);
return;
defaul t:
super. copyNewval ueFor Redo(e) ;
return;

The JGo Package 83 Copyright © Northwoods Software

JGo User Guide

}
}
public void changeVal ue(JGoDocunent ChangedEdit e, bool ean undo)

{

/1 Actually performthe undo or redo operation
switch (e.getFlags()) {
case | ntVal Changed:
set I nt Val (e. get Val uel nt (undo)) ;

return;
defaul t:
super. changeVal ue(e, undo);
return;
}
}
public static final int |IntVal Changed = JGDocunent Event. LAST +
10000;

Add Auto-layout Support

In the section entitled “ Register the JGo Beans with the Development Environment”, we
added the com.nwoods.jgo.layout package to the libraries required by this sample
application. This optional package is required for auto-layout support. For more details
on the auto-layout package and different layout options, refer to the “JGo Layout User

Guide”.
We'll start by adding the menu item for auto-layout to the menu bar by adding the
following code to the createSShell() method:

Menul t em mi Layout = new Menulten{editMenu, SWI. NONE)
m Layout . set Text (" Layout");

The updated menu bar should appear as follows:

84

Building a Sample Application Using JGo Beans

File W]l
“_ | Copy

Cuk

Pacte Blue MNode

Indo

Redo

Fed Mode
Elue Mode e
FedMode
Green Mode
o, S

Just as before, we now add the selectionAdapter event listeners for these commands.
We will add code to this method to perform alayered, directed graph layout of the nodes
displayed in the JGoView. We accomplish this by first constructing a
com.nwoods,jgo.layout.JGoL ayer edDigr aphAutoL ayout object, passing the
JGoDocument to the constructor so that a JGoNetwork of nodes and links can be
automatically created for us. We then specify property values for layout direction, layer
spacing, and column spacing. Finally, we call performL ayout() to cause the layout
operation to actualy take place as follows:

nm Layout . addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ect ed(Sel ecti onEvent event) {
JGoLayer edDi gr aphAut oLayout | ayout =
new JGoLayer edDi gr aphAut oLayout (j GoVi ew. get Docunent ()) ;
| ayout . setDirecti onOpti on(
JGoLayer edDi gr aphAut oLayout . LD DI RECTI ON_RI GHT) ;

| ayout . set Layer Spaci ng(10) ;

| ayout . set Col utmSpaci ng(10) ;

| ayout . perforniayout();

1)

Build and run the program again. Create a network of nodes and links and select the
“Edit/Layout” option from the menu. The resulting window may appear as follows:

The JGo Package 85 Copyright © Northwoods Software

JGo User Guide

File Edit
QEQ FedMode Green u:u:ie Blue Mode
Blue NMode Fed Mode 3 eeHl:ude Greeude
Gree |:| = FedMNode

Elue Mode i o
ed MNode
FedMode
Greeﬁ]ude Y-

Add XML/SVG Serialization Support

86

In the section entitled “ Register the JGo Beans with the Development Environment”, we
added the com.nwoods.jgo.svg package to the libraries required by this sample
application. This optional package is required for serialization to and from the extended
SVG XML document type. Refer to the” Serialization” section of “JGoDocument” in the
“JGoDocument and JGoObject Details’ chapter for more information on thistopic.

We'll start by adding the menu items for auto-layout to the menu bar by adding the
following code to the createSShell() method:

Menul t em mi Save = new Menulten(fil eMenu, SWI. NONE);

nm Save. set Text (" Save...");
Menultem m Restore = new Menulten(fil eMenu, SWI. NONE) ;

nm Restore. set Text ("Qpen...");

The updated menu bar should appear asfollows:

Building a Sample Application Using JGo Beans

Blue MNode

[Red Nu:nde|

Blue Mode i
Fed MNode
Greeﬂ]nde P

Just as before, we now add the selectionAdapter event listeners for these commands.
We will add code to these methods to save and restore the graph shown in the JGoView
to and from XML documents. The XML document format used is an extension of the
SVG (Scalable Vector Graphics) XML document type. We will use a FileDialog object
to identify the path of the file to be read or written, and create a Filel nputStream or
FileOutputStream associated with that file. Finally, we will create an instance of
com.nwoods,jgo.svg.DefaultDocument and call the SYGReadDoc or SV GWriteDoc
methods to read or write the extended SV G document. The resulting codeis as follows:

nm Save. addSel ecti onLi st ener (new Sel ecti onAdapter () {
public void wi dget Sel ect ed(Sel ecti onEvent event) {

FileDi alog fd = new Fil eDi al og(sShell, SW. SAVE);

String file = fd. open();

if (file!=null) {

try {

Fil eCQut put Stream fstream = new Fil eQut put Streanm(fil e);
Def aul t Docunment svgDonDoc = new Def aul t Docunent () ;

svgDonmDoc. SVGW i t eDoc(fstream | GoVi ew. get Docunent());
}
catch (Exception e) {

e.printStackTrace();

}
1)

nm Rest or e. addSel ecti onLi st ener (new Sel ecti onAdapter() {

The JGo Package 87 Copyright © Northwoods Software

JGo User Guide

88

1),

public void wi dget Sel ect ed(Sel ecti onEvent event) {
FileDi alog fd = new Fil eDi al og(sShell, SW. OPEN);
String file = fd. open();
if (file!=null) {
try {
Fil el nput Stream fstream = new Fil el nput Strean(file);
Def aul t Docunment svgDonDoc = new Def aul t Docunent () ;
svgDonDoc. SVGReadDoc(fstream | GoVi ew. get Docunent ());
}
catch (Exception e) {

e.printStackTrace();
}

Build and run the program again. Create a network of nodes and links and select the
“File/Save...” option from the menu. Verify that the output file can be read back into the
sample application using the “File/Open...” option from the menu.

At this point, the JGo graph is being successfully serialized to and from afile on disk, but
our extensions to JGo are not. In particular, our SampleNode subclass of
JGoBasicNodeis not being saved correctly. When the fileisread back into our sample
application, all the nodesin our graph have been recreated as JGoBasicNodes rather than
our SampleNode subclass. We can see this by double clicking on any node in the
diagram. Instead of seeing the message pane for a SampleNode object (“Blue Node 17,
for example) we see the generic message used for all other object typesthat simply shows
the class name of the double clicked object (*com.nwoods.jgo.JGoBasicNode” for
example).

We need to override JGoObject.SVGWriteObject and JGoObject.SVGReadObject in
order to cause our subclass to be saved, and restored properly. In SVGWriteObject we
call createJGoClassElement to create an XML element corresponding to our subclass.
The class name passed to this element must be afully qualified class name. This class
name will be used to recreate an instance of our subclass when reading the file back in, so
it important to make sure this name is entered correctly. We use the setAttribute method
to add an attribute called “intval” to this element and use it to save the value of our only
data member.

When reading the file back in with SV GReadObj ect, use the getAttribute method to
retrieve our data member value.

In both SVGReadObject and SVGWTriteObject, we must remember to call super ()
to allow our superclasses to save and restore their data. The resulting codeis as follows:

public void SVGWiteObject (DonDoc svgDoc, DonEl enment
j GoEl erent Gr oup)

{

Building a Sample Application Using JGo Beans

/1 Add Sanpl eNode el enent
Dontl ement sanpl eNode = svgDoc. creat eJGoC assEl erment (
"com nwoods. j go. exanpl es. sanpl eappSW. Sanpl eNode",
j GoEl enment Gr oup) ;
sanmpl eNode. set Attribute("intval", Integer.toString(nylnt));
/1 Have superclass add to the JGoObj ect group
super. SVGW i t eObj ect (svgDoc, | GoEl enent Group) ;

publ i c DomNode SVGReadbhj ect (DonDoc svgDoc, JGoDocunent j GoDoc,
DonEl enent svgEl ement, DonEl ement j GoChi | dEI enent)

{
if (jCGoChildEl ement !'= null) {
/1 This is a Sanpl eNode el enent
nylnt = Integer.parselnt(jGoChil dEl enent.getAttribute("intval"));
super. SVGReadbj ect (svgboc, j GoDoc, svgEl erment,
j GoChi | dEI enment . get Next Si bl i ngJGod assEl enent ()) ;
}
return svgEl enent. get Next Si bl i ng();
}

Build and run the program again. Create a network of nodes and links and select the
“File/Save...” option from the menu. Verify that the output file can be read back into the
sample application using the “File/Open...” option from the menu. Also verify that
double-clicking on the restored nodes displays the correctly restored value for theintVal
property of each SampleNode.

The output file can be viewed as using an SV G viewer, an XML viewer, or simply using
a standard text editor. The portion of the extended SVG XML output relating to our
SampleNode subclass of JGoBasicNode is as follows:

<JGod ass cl ass="com nwoods. j go. exanpl es. Sanpl eNode" intval ="1"/>

The JGo Package 89 Copyright © Northwoods Software

